ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximate Analytical Solutions of the Pseudospin Symmetric Dirac Equation for Exponential-type Potentials

454   0   0.0 ( 0 )
 نشر من قبل Ramazan Sever
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The solvability of The Dirac equation is studied for the exponential-type potentials with the pseudospin symmetry by using the parametric generalization of the Nikiforov-Uvarov method. The energy eigenvalue equation, and the corresponding Dirac spinors for Morse, Hulthen, and q-deformed Rosen-Morse potentials are obtained within the framework of an approximation to the spin-orbit coupling term, so the solutions are given for any value of the spin-orbit quantum number $kappa=0$, or $kappa eq 0$.



قيم البحث

اقرأ أيضاً

Dirac equation is solved for some exponential potentials, hypergeometric-type potential, generalized Morse potential and Poschl-Teller potential with any spin-orbit quantum number $kappa$ in the case of spin and pseudospin symmetry, respectively. We have approximated for non s-waves the centrifugal term by an exponential form. The energy eigenvalue equations, and the corresponding wave functions are obtained by using the generalization of the Nikiforov-Uvarov method.
The Dirac equation, with position-dependent mass, is solved approximately for the generalized Hulth{e}n potential with any spin-orbit quantum number $kappa$. Solutions are obtained by using an appropriate coordinate transformation, reducing the effec tive mass Dirac equation to a Schr{o}dinger-like differential equation. The Nikiforov-Uvarov method is used in the calculations to obtain energy eigenvalues and the corresponding wave functions. Numerical results are compared with those given in the literature. Analytical results are also obtained for the case of constant mass and the results are in good agreement with the literature.
Approximate analytical solutions of the Dirac equation are obtained for some diatomic molecular potentials plus a tensor interaction with spin and pseudospin symmetries with any angular momentum. We find the energy eigenvalue equations in the closed form and the spinor wave functions by using an algebraic method. We also perform numerical calculations for the Poschl-Teller potential to show the effect of the tensor interaction. Our results are consistent with ones obtained before.
A new approximation scheme to the centrifugal term is proposed to obtain the $l eq 0$ bound-state solutions of the Schr{o}dinger equation for an exponential-type potential in the framework of the hypergeometric method. The corresponding normalized wa ve functions are also found in terms of the Jacobi polynomials. To show the accuracy of the new proposed approximation scheme, we calculate the energy eigenvalues numerically for arbitrary quantum numbers $n$ and $l$ with two different values of the potential parameter $sigma_{text{0}}.$ Our numerical results are of high accuracy like the other numerical results obtained by using program based on a numerical integration procedure for short-range and long-range potentials. The energy bound-state solutions for the s-wave ($l=0$) and $sigma_{0}=1$ cases are given.
In the 70s Smith and Tassie, and Bell and Ruegg independently found SU(2) symmetries of the Dirac equation with scalar and vector potentials. These symmetries, known as pseudospin and spin symmetries, have been extensively researched and applied to s everal physical systems. Twenty years after, in 1997, the pseudospin symmetry has been revealed by Ginocchio as a relativistic symmetry of the atomic nuclei when it is described by relativistic mean field hadronic models. The main feature of these symmetries is the suppression of the spin-orbit coupling either in the upper or lower components of the Dirac spinor, thereby turning the respective second-order equations into Schrodinger-like equations, i.e, without a matrix structure. In this paper we propose a generalization of these SU(2) symmetries for potentials in the Dirac equation with several Lorentz structures, which also allow for the suppression of the matrix structure of second-order equation equation of either the upper or lower components of the Dirac spinor. We derive the general properties of those potentials and list some possible candidates, which include the usual spin-pseudospin potentials, and also 2- and 1-dimensional potentials. An application for a particular physical system in two dimensions, electrons in graphene, is suggested.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا