ﻻ يوجد ملخص باللغة العربية
We propose a generalization of pseudospin and spin symmetries, the SU(2) symmetries of Dirac equation with scalar and vector mean-field potentials originally found independently in the 70s by Smith and Tassie, and Bell and Ruegg. As relativistic symmetries, they have been extensively researched and applied to several physical systems for the last 18 years. The main feature of these symmetries is the suppression of the spin-orbit coupling either in the upper or lower components of the Dirac spinor, thereby turning the respective second-order equations into Schrodinger-like equations, i.e, without a matrix structure. In this paper we use the original formalism of Bell and Ruegg to derive general requirements for the Lorentz structures of potentials in order to have these SU(2) symmetries in the Dirac equation, again allowing for the suppression of the matrix structure of the second-order equation of either the upper or lower components of the Dirac spinor. Furthermore, we derive equivalent conditions for spin and pseudospin symmetries with 2- and 1-dimensional potentials and list some possible candidates for 3, 2, and 1 dimensions. We suggest applications for physical systems in three and two dimensions, namely electrons in graphene.
Dirac Hamiltonian is scaled in the atomic units $hbar =m=1$, which allows us to take the non-relativistic limit by setting the Compton wavelength $% lambda rightarrow 0 $. The evolutions of the spin and pseudospin symmetries towards the non-relativis
In the 70s Smith and Tassie, and Bell and Ruegg independently found SU(2) symmetries of the Dirac equation with scalar and vector potentials. These symmetries, known as pseudospin and spin symmetries, have been extensively researched and applied to s
We present the complete first order relativistic quantum kinetic theory with spin for massive fermions derived from the Wigner function formalism in a concise form that shows explicitly how the 32 Wigner equations reduce to 4 independent transport eq
We give a brief overview of the kinetic theory for spin-1/2 fermions in Wigner function formulism. The chiral and spin kinetic equations can be derived from equations for Wigner functions. A general Wigner function has 16 components which satisfy 32
We study the Wigner function for massive spin-1/2 fermions in electromagnetic fields. Dirac form kinetic equation and Klein-Gordon form kinetic equation are obtained for the Wigner function, which are derived from the Dirac equation. The Wigner funct