ﻻ يوجد ملخص باللغة العربية
Dirac equation is solved for some exponential potentials, hypergeometric-type potential, generalized Morse potential and Poschl-Teller potential with any spin-orbit quantum number $kappa$ in the case of spin and pseudospin symmetry, respectively. We have approximated for non s-waves the centrifugal term by an exponential form. The energy eigenvalue equations, and the corresponding wave functions are obtained by using the generalization of the Nikiforov-Uvarov method.
The solvability of The Dirac equation is studied for the exponential-type potentials with the pseudospin symmetry by using the parametric generalization of the Nikiforov-Uvarov method. The energy eigenvalue equation, and the corresponding Dirac spino
We present the fundamental solutions for the spin-1/2 fields propagating in the spacetimes with power type expansion/contraction and the fundamental solution of the Cauchy problem for the Dirac equation. The derivation of these fundamental solutions
Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.
Recently, we have demonstrated that some subsolutions of the free Duffin-Kemmer-Petiau and the Dirac equations obey the same Dirac equation with some built-in projection operators. In the present paper we study the Dirac equation in the interacting c
Based on a method that produces the solutions to the Schrodinger equations of partner potentials, we give two conditionally exactly solvable partner potentials of exponential type defined on the half line. These potentials are multiplicative shape in