ﻻ يوجد ملخص باللغة العربية
Dirac Hamiltonian is scaled in the atomic units $hbar =m=1$, which allows us to take the non-relativistic limit by setting the Compton wavelength $% lambda rightarrow 0 $. The evolutions of the spin and pseudospin symmetries towards the non-relativistic limit are investigated by solving the Dirac equation with the parameter $lambda$. With $lambda$ transformation from the original Compton wavelength to 0, the spin splittings decrease monotonously in all spin doublets, and the pseudospin splittings increase in several pseudospin doublets, no change, or even reduce in several other pseudospin doublets. The various energy splitting behaviors of both the spin and pseudospin doublets with $lambda$ are well explained by the perturbation calculations of Dirac Hamiltonian in the present units. It indicates that the origin of spin symmetry is entirely due to the relativistic effect, while the origin of pseudospin symmetry cannot be uniquely attributed to the relativistic effect.
We propose a generalization of pseudospin and spin symmetries, the SU(2) symmetries of Dirac equation with scalar and vector mean-field potentials originally found independently in the 70s by Smith and Tassie, and Bell and Ruegg. As relativistic symm
The dominance (preponderance) of the 0+ ground state for random interactions is shown to be a consequence of certain random interactions with chaotic features. These random interactions, called chaotic random interactions, impart a symmetry property
Following a recent rapid communications[Phys.Rev.C85,021302(R) (2012)], we present more details on the investigation of the relativistic symmetry by use of the similarity renormalization group. By comparing the contributions of the different componen
It is shown that the rotational band structure of the cluster states in 12C and 16O can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle f
In the 70s Smith and Tassie, and Bell and Ruegg independently found SU(2) symmetries of the Dirac equation with scalar and vector potentials. These symmetries, known as pseudospin and spin symmetries, have been extensively researched and applied to s