ترغب بنشر مسار تعليمي؟ اضغط هنا

A Wolf-Rayet-like progenitor of supernova SN 2013cu from spectral observations of a wind

84   0   0.0 ( 0 )
 نشر من قبل Avishay Gal-Yam
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Avishay Gal-Yam




اسأل ChatGPT حول البحث

The explosive fate of massive stripped Wolf-Rayet (W-R) stars is a key open question in stellar physics. An appealing option is that hydrogen-deficient W-R stars are the progenitors of some H-poor supernova (SN) explosions of Types IIb, Ib, and Ic. A blue object, having luminosity and colors consistent with those of some W-R stars, has been recently identified at the location of a SN~Ib in pre-explosion images but has not yet been conclusively determined to have been the progenitor. Similar previous works have so far only resulted in nondetections. Comparison of early photometric observations of Type Ic supernovae with theoretical models suggests that the progenitor stars had radii <10^12 cm, as expected for some W-R stars. However, the hallmark signature of W-R stars, their emission-line spectra, cannot be probed by such studies. Here, we report the detection of strong emission lines in an early-time spectrum of SN 2013cu (iPTF13ast; Type IIb) obtained ~15.5 hr after explosion (flash spectroscopy). We identify W-R-like wind signatures suggesting a progenitor of the WN(h) subclass. The extent of this dense wind may indicate increased mass loss from the progenitor shortly prior to its explosion, consistent with recent theoretical predictions.

قيم البحث

اقرأ أيضاً

Using a code that employs a self-consistent method for computing the effects of photoionization on circumstellar gas dynamics, we model the formation of wind-driven nebulae around massive Wolf-Rayet (W-R) stars. Our algorithm incorporates a simplifie d model of the photo-ionization source, computes the fractional ionization of hydrogen due to the photoionizing flux and recombination, and determines self-consistently the energy balance due to ionization, photo-heating and radiative cooling. We take into account changes in stellar properties and mass-loss over the stars evolution. Our multi-dimensional simulations clearly reveal the presence of strong ionization front instabilities. Using various X-ray emission models, and abundances consistent with those derived for W-R nebulae, we compute the X-ray flux and spectra from our wind bubble models. We show the evolution of the X-ray spectral features with time over the evolution of the star, taking the absorption of the X-rays by the ionized bubble into account. Our simulated X-ray spectra compare reasonably well with observed spectra of Wolf-Rayet bubbles. They suggest that X-ray nebulae around massive stars may not be easily detectable, consistent with observations.
We present observations of supernova (SN) 2008ge, which is spectroscopically similar to the peculiar SN 2002cx, and its pre-explosion site that indicate that its progenitor was probably a white dwarf. NGC 1527, the host galaxy of SN 2008ge, is an S0 galaxy with no evidence of star formation or massive stars. Astrometrically matching late-time imaging of SN 2008ge to pre-explosion HST imaging, we constrain the luminosity of the progenitor star. Since SN 2008ge has no indication of hydrogen or helium in its spectrum, its progenitor must have lost its outer layers before exploding, requiring that it be a white dwarf, a Wolf-Rayet star, or a lower-mass star in a binary system. Observations of the host galaxy show no signs of individual massive stars, star clusters, or H II regions at the SN position or anywhere else, making a Wolf-Rayet progenitor unlikely. Late-time spectroscopy of SN 2008ge show strong [Fe II] lines with large velocity widths compared to other members of this class at similar epochs. These previously unseen features indicate that a significant amount of the SN ejecta is Fe (presumably the result of radioactive decay of 56Ni generated in the SN), further supporting a thermonuclear explosion. Placing the observations of SN 2008ge in the context of observations of other objects in the class of SN, we suggest that the progenitor was most likely a white dwarf.
77 - Jose H. Groh 2014
We present the first quantitative spectroscopic modeling of an early-time supernova that interacts with its progenitor wind. Using the radiative transfer code CMFGEN, we investigate the recently-reported 15.5 h post-explosion spectrum of the type IIb SN 2013cu. For the first time, we are able to directly measure the chemical abundances of a SN progenitor and find a relatively H-rich wind, with H and He abundances (by mass) of X=0.46 +- 0.2 and Y=0.52 +- 0.2, respectively. The wind is enhanced in N and depleted in C relative to solar values (mass fractions of 8.2e-3 and 1e-5). We obtain that a dense wind/circumstellar medium, with a mass-loss rate of Mdot= 3e-3 Msun/yr and wind velocity vwind=100 km/s, surrounds the star at the pre-SN stage. These values are lower than previous analytical estimates, although we find Mdot/vinf consistent with previous work. We also compute a CMFGEN model to constrain the progenitor spectral type and find that the high Mdot and low vwind imply that the star had an effective temperature of ~8000 K immediately before the SN explosion. Our models suggest that the progenitor was either an unstable luminous blue variable or a yellow hypergiant undergoing an eruptive phase, and rule out a WR star. We classify the post-explosion spectra at 15.5 h as XWN5(h) and advocate for the use of the prefix `X (eXplosion) to avoid confusion between post-explosion, non-stellar spectra with those of massive stars. We show that the progenitor spectral type is significantly different than the early post-explosion spectral type owing to the huge differences in the ionization structure before and after the SN event. We find the following temporal evolution: LBV/YHG -> XWN5(h) -> SN IIb. Future early-time spectroscopy in the UV will give access to additional spectroscopic diagnostics and further constrain the properties of SN precursors, such as their metallicities.
We present optical and near-infrared photometry and spectroscopy of the Type IIn supernova (SN) 2014ab, obtained by the Carnegie Supernova Project II (CSP-II) and initiated immediately after its optical discovery. We also present mid-infrared photome try obtained by the Wide-field Infrared Survey Explorer (WISE) satellite extending from 56 days prior to the optical discovery to over 1600 days. The light curve of SN 2014ab evolves slowly, while the spectra exhibit strong emission features produced from the interaction between rapidly expanding ejecta and dense circumstellar matter. The light curve and spectral properties are very similar to those of SN 2010jl. The estimated mass-loss rate of the progenitor of SN 2014ab is of the order of 0.1 Msun/yr under the assumption of spherically symmetric circumstellar matter and steady mass loss. Although the mid-infrared luminosity increases due to emission from dust, which is characterized by a blackbody temperature close to the dust evaporation temperature (~ 2000 K), no clear signatures of in situ dust formation within the cold dense shell located behind the forward shock are observed in SN 2014ab in early phases. Mid-infrared emission of SN 2014ab may originate from pre-existing dust located within dense circumstellar matter that is heated by the SN shock or shock-driven radiation. Finally, for the benefit of the community, we also present in an Appendix five near-infrared spectra of SN 2010jl obtained between 450 to 1300 days post discovery.
High cadence ultraviolet, optical and near-infrared photometric and low-resolution spectroscopic observations of the peculiar Type II supernova (SN) 2018hna are presented. The early phase multiband light curves exhibit the adiabatic cooling envelope emission following the shock breakout up to ~14 days from the explosion. SN~2018hna has a rise time of $sim$,88 days in the V-band, similar to SN 1987A. A $rm^{56}Ni$ mass of ~0.087$pm$0.004 $rm M_{odot}$ is inferred for SN 2018hna from its bolometric light curve. Hydrodynamical modelling of the cooling phase suggests a progenitor with a radius ~50 $rm R_{odot}$, a mass of ~14-20 $rm M_{odot}$ and explosion energy of ~1.7-2.9$rm times$ $rm 10^{51} erg$. The smaller inferred radius of the progenitor than a standard red supergiant is indicative of a blue supergiant progenitor of SN 2018hna. A sub-solar metallicity (~0.3 $rm Z_{odot}$) is inferred for the host galaxy UGC 07534, concurrent with the low-metallicity environments of 1987A-like events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا