ﻻ يوجد ملخص باللغة العربية
Using a code that employs a self-consistent method for computing the effects of photoionization on circumstellar gas dynamics, we model the formation of wind-driven nebulae around massive Wolf-Rayet (W-R) stars. Our algorithm incorporates a simplified model of the photo-ionization source, computes the fractional ionization of hydrogen due to the photoionizing flux and recombination, and determines self-consistently the energy balance due to ionization, photo-heating and radiative cooling. We take into account changes in stellar properties and mass-loss over the stars evolution. Our multi-dimensional simulations clearly reveal the presence of strong ionization front instabilities. Using various X-ray emission models, and abundances consistent with those derived for W-R nebulae, we compute the X-ray flux and spectra from our wind bubble models. We show the evolution of the X-ray spectral features with time over the evolution of the star, taking the absorption of the X-rays by the ionized bubble into account. Our simulated X-ray spectra compare reasonably well with observed spectra of Wolf-Rayet bubbles. They suggest that X-ray nebulae around massive stars may not be easily detectable, consistent with observations.
Dense populations of stars surround the nuclear regions of galaxies. In this work, we study the interaction of a WR star with relativistic jets in active galactic nuclei. A bow-shaped double-shock structure will form as a consequence of the interacti
The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of
Using XMM-Newton, we undertook a dedicated project to search for X-ray bright wind-wind collisions in 18 WR+OB systems. We complemented these observations with Swift and Chandra datasets, allowing for the study of two additional systems. We also impr
Suzaku observations of the Wolf-Rayet binary WR 140 (WC7pd+O5.5fc) were made at four different times around periastron passage in 2009 January. The spectra changed in shape and flux with the phase. As periastron approached, the column density of the
The explosive fate of massive stripped Wolf-Rayet (W-R) stars is a key open question in stellar physics. An appealing option is that hydrogen-deficient W-R stars are the progenitors of some H-poor supernova (SN) explosions of Types IIb, Ib, and Ic. A