ترغب بنشر مسار تعليمي؟ اضغط هنا

Early-time spectra of supernovae and their precursor winds: the luminous blue variable/yellow hypergiant progenitor of SN 2013cu

78   0   0.0 ( 0 )
 نشر من قبل Jose H. Groh
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jose H. Groh




اسأل ChatGPT حول البحث

We present the first quantitative spectroscopic modeling of an early-time supernova that interacts with its progenitor wind. Using the radiative transfer code CMFGEN, we investigate the recently-reported 15.5 h post-explosion spectrum of the type IIb SN 2013cu. For the first time, we are able to directly measure the chemical abundances of a SN progenitor and find a relatively H-rich wind, with H and He abundances (by mass) of X=0.46 +- 0.2 and Y=0.52 +- 0.2, respectively. The wind is enhanced in N and depleted in C relative to solar values (mass fractions of 8.2e-3 and 1e-5). We obtain that a dense wind/circumstellar medium, with a mass-loss rate of Mdot= 3e-3 Msun/yr and wind velocity vwind=100 km/s, surrounds the star at the pre-SN stage. These values are lower than previous analytical estimates, although we find Mdot/vinf consistent with previous work. We also compute a CMFGEN model to constrain the progenitor spectral type and find that the high Mdot and low vwind imply that the star had an effective temperature of ~8000 K immediately before the SN explosion. Our models suggest that the progenitor was either an unstable luminous blue variable or a yellow hypergiant undergoing an eruptive phase, and rule out a WR star. We classify the post-explosion spectra at 15.5 h as XWN5(h) and advocate for the use of the prefix `X (eXplosion) to avoid confusion between post-explosion, non-stellar spectra with those of massive stars. We show that the progenitor spectral type is significantly different than the early post-explosion spectral type owing to the huge differences in the ionization structure before and after the SN event. We find the following temporal evolution: LBV/YHG -> XWN5(h) -> SN IIb. Future early-time spectroscopy in the UV will give access to additional spectroscopic diagnostics and further constrain the properties of SN precursors, such as their metallicities.

قيم البحث

اقرأ أيضاً

94 - Ioana Boian , Jose Groh 2017
In this paper we analyse the pre-explosion spectrum of SN2015bh by performing radiative transfer simulations using the CMFGEN code. This object has attracted significant attention due to its remarkable similarity to SN2009ip in both its pre- and post -explosion behaviour. They seem to belong to a class of events for which the fate as a genuine core-collapse supernova or a non-terminal explosion is still under debate. Our CMFGEN models suggest that the progenitor of SN2015bh had an effective temperature between 8700 and 10000 K, luminosity in the range ~ 1.8-4.74e6 Lsun, contained at least 25% H in mass at the surface, and half-solar Fe abundances. The results also show that the progenitor of SN 2015bh generated an extended wind with a mass-loss rate of ~ 6e-4 to 1.5e-3 Msun/yr and a velocity of 1000 km/s. We determined that the wind extended to at least 2.57e14 cm and lasted for at least 30 days prior to the observations, releasing 5e-5 Msun into the circumstellar medium. In analogy to 2009ip, we propose that this is the material that the explosive ejecta could interact at late epochs, perhaps producing observable signatures that can be probed with future observations. We conclude that the progenitor of SN 2015bh was most likely a warm luminous blue variable of at least 35 Msun before the explosion. Considering the high wind velocity, we cannot exclude the possibility that the progenitor was a Wolf-Rayet star that inflated just before the 2013 eruption, similar to HD5980 during its 1994 episode. If the star survived, late-time spectroscopy may reveal either a similar LBV or a Wolf-Rayet star, depending on the mass of the H envelope before the explosion. If the star exploded as a genuine SN, 2015bh would be a remarkable case of a successful explosion after black-hole formation in a star with a possible minimum mass 35 Msun at the pre-SN stage.
84 - Avishay Gal-Yam 2014
The explosive fate of massive stripped Wolf-Rayet (W-R) stars is a key open question in stellar physics. An appealing option is that hydrogen-deficient W-R stars are the progenitors of some H-poor supernova (SN) explosions of Types IIb, Ib, and Ic. A blue object, having luminosity and colors consistent with those of some W-R stars, has been recently identified at the location of a SN~Ib in pre-explosion images but has not yet been conclusively determined to have been the progenitor. Similar previous works have so far only resulted in nondetections. Comparison of early photometric observations of Type Ic supernovae with theoretical models suggests that the progenitor stars had radii <10^12 cm, as expected for some W-R stars. However, the hallmark signature of W-R stars, their emission-line spectra, cannot be probed by such studies. Here, we report the detection of strong emission lines in an early-time spectrum of SN 2013cu (iPTF13ast; Type IIb) obtained ~15.5 hr after explosion (flash spectroscopy). We identify W-R-like wind signatures suggesting a progenitor of the WN(h) subclass. The extent of this dense wind may indicate increased mass loss from the progenitor shortly prior to its explosion, consistent with recent theoretical predictions.
We report initial observations and analysis on the Type IIb SN~2016gkg in the nearby galaxy NGC~613. SN~2016gkg exhibited a clear double-peaked light curve during its early evolution, as evidenced by our intensive photometric follow-up campaign. SN~2 016gkg shows strong similarities with other Type IIb SNe, in particular with respect to the he~emission features observed in both the optical and near infrared. SN~2016gkg evolved faster than the prototypical Type~IIb SN~1993J, with a decline similar to that of SN~2011dh after the first peak. The analysis of archival {it Hubble Space Telescope} images indicate a pre-explosion source at SN~2016gkgs position, suggesting a progenitor star with a $sim$mid F spectral type and initial mass $15-20$msun, depending on the distance modulus adopted for NGC~613. Modeling the temperature evolution within $5,rm{days}$ of explosion, we obtain a progenitor radius of $sim,48-124$rsun, smaller than that obtained from the analysis of the pre-explosion images ($240-320$rsun).
We present the first systematic spectropolarimetric study of Luminous Blue Variables (LBVs), and find that at least half those objects studied display evidence for intrinsic polarization -- a signature of significant inhomogeneity at the base of the wind. Furthermore, multi-epoch observations reveal that the polarization is variable in both strength and position angle. This evidence points away from a simple axi-symmetric wind structure `{a} la the B[e] supergiants, and instead suggests a wind consisting of localised density enhancements, or `clumps. We show with an analytical model that, in order to produce the observed variability, the clumps must be large, produced at or below the photosphere, and ejected on timescales of days. More details of LBV wind-clumping will be determined through further analysis of the model and a polarimetric monitoring campaign.
The evolution of massive stars surviving the red supergiant (RSG) stage remains unexplored due to the rarity of such objects. The yellow hypergiants (YHGs) appear to be the warm counterparts of post-RSG classes located near the Humphreys-Davidson upp er luminosity limit, which are characterized by atmospheric instability and high mass-loss rates. We aim to increase the number of YHGs in M33 and thus to contribute to a better understanding of the pre-supernova evolution of massive stars. Optical spectroscopy of five dust-enshrouded YSGs selected from mid-IR criteria was obtained with the goal of detecting evidence of extensive atmospheres. We also analyzed BVI photometry for 21 of the most luminous YSGs in M33 to identify changes in the spectral type. To explore the properties of circumstellar dust, we performed SED-fitting of multi-band photometry of the 21 YSGs. We find three luminous YSGs in our sample to be YHG candidates, as they are surrounded by hot dust and are enshrouded within extended, cold dusty envelopes. Our spectroscopy of star 2 shows emission of more than one H$alpha$ component, as well as emission of CaII, implying an extended atmospheric structure. In addition, the long-term monitoring of the star reveals a dimming in the visual light curve of amplitude larger than 0.5 mag that caused an apparent drop in the temperature that exceeded 500 K. We suggest the observed variability to be analogous to that of the Galactic YHG $rho$ Cas. Five less luminous YSGs are suggested as post-RSG candidates showing evidence of hot or/and cool dust emission. We demonstrate that mid-IR photometry, combined with optical spectroscopy and time-series photometry, provide a robust method for identifying candidate YHGs. Future discovery of YHGs in Local Group galaxies is critical for the study of the late evolution of intermediate-mass massive stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا