ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Progenitor and Supernova of the SN 2002cx-like Supernova 2008ge

119   0   0.0 ( 0 )
 نشر من قبل Ryan J. Foley
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations of supernova (SN) 2008ge, which is spectroscopically similar to the peculiar SN 2002cx, and its pre-explosion site that indicate that its progenitor was probably a white dwarf. NGC 1527, the host galaxy of SN 2008ge, is an S0 galaxy with no evidence of star formation or massive stars. Astrometrically matching late-time imaging of SN 2008ge to pre-explosion HST imaging, we constrain the luminosity of the progenitor star. Since SN 2008ge has no indication of hydrogen or helium in its spectrum, its progenitor must have lost its outer layers before exploding, requiring that it be a white dwarf, a Wolf-Rayet star, or a lower-mass star in a binary system. Observations of the host galaxy show no signs of individual massive stars, star clusters, or H II regions at the SN position or anywhere else, making a Wolf-Rayet progenitor unlikely. Late-time spectroscopy of SN 2008ge show strong [Fe II] lines with large velocity widths compared to other members of this class at similar epochs. These previously unseen features indicate that a significant amount of the SN ejecta is Fe (presumably the result of radioactive decay of 56Ni generated in the SN), further supporting a thermonuclear explosion. Placing the observations of SN 2008ge in the context of observations of other objects in the class of SN, we suggest that the progenitor was most likely a white dwarf.



قيم البحث

اقرأ أيضاً

We present optical observations of a SN 2002cx-like supernova SN 2013en in UGC 11369, spanning from a phase near maximum light (t= +1 d) to t= +60 d with respect to the R-band maximum. Adopting a distance modulus of mu=34.11 +/- 0.15 mag and a total extinction (host galaxy+Milky Way) of $A_V sim1.5$ mag, we found that SN 2013en peaked at $M(R)sim -18.6$ mag, which is underluminous compared to the normal SNe Ia. The near maximum spectra show lines of Si II, Fe II, Fe III, Cr II, Ca II and other intermediate-mass and iron group elements which all have lower expansion velocities (i.e., ~ 6000 km/s). The photometric and spectroscopic evolution of SN 2013en is remarkably similar to those of SN 2002cx and SN 2005hk, suggesting that they are likely to be generated from a similar progenitor scenario or explosion mechanism.
127 - A. A. Miller 2017
Modern wide-field, optical time-domain surveys must solve a basic optimization problem: maximize the number of transient discoveries or minimize the follow-up needed for the new discoveries. Here, we describe the Color Me Intrigued experiment, the fi rst from the intermediate Palomar Transient Factory (iPTF) to search for transients simultaneously in the $g_mathrm{PTF}$- and $R_mathrm{PTF}$-bands. During the course of this experiment we discovered iPTF$,$16fnm, a new member of the 02cx-like subclass of type Ia supernovae (SNe). iPTF$,$16fnm peaked at $M_{g_mathrm{PTF}} = -15.09 pm 0.17 ; mathrm{mag}$, making it the second least-luminous known type Ia SN. iPTF 16fnm exhibits all the hallmarks of the 02cx-like class: (i) low luminosity at peak, (ii) low ejecta velocities, and (iii) a non-nebular spectra several months after peak. Spectroscopically, iPTF$,$16fnm exhibits a striking resemblence to 2 other low-luminosity 02cx-like SNe: SNe 2007qd and 2010ae. iPTF$,$16fnm and SN 2005hk decline at nearly the same rate, despite a 3 mag difference in brightness at peak. When considering the full subclass of 02cx-like SNe, we do not find evidence for a tight correlation between peak luminosity and decline rate in either the $g$ or $r$ band. We further examine the $g - r$ evolution of 02cx-like SNe and find that their unique color evolution can be used to separate them from 91bg-like and normal type Ia SNe. This selection function will be especially important in the spectroscopically incomplete Zwicky Transient Facility/Large Synoptic Survey Telescope era. We measure the relative rate of 02cx-like SNe to normal SNe Ia and find $r_{N_{02cx}/N_{Ia}} = 25^{+75}_{-18.5}%$. Finally, we close by recommending that LSST periodically evaluate, and possibly update, its observing cadence to maximize transient science.
182 - M. Fraser 2009
We report the identification of a source coincident with SN 2009kr in HST pre-explosion images. The object appears to be a single point source with an intrinsic colour V-I = 1.1 and M_V = -7.6. If this is a single star it would be a yellow supergiant of log L/L_{sol} sim 5.1 and a mass of 15 (+5/-4) M_{sol}. The spatial resolution does not allow us yet to definitively determine if the progenitor object is a single star, a binary system, or a compact cluster. We show that the early lightcurve is flat, similar to IIP SNe, but that the the spectra are somewhat peculiar, displaying unusual P-Cygni profiles. The evolution of the expanding ejecta will play an important role in understanding the progenitor object.
134 - Avishay Gal-Yam 2014
The explosive fate of massive stripped Wolf-Rayet (W-R) stars is a key open question in stellar physics. An appealing option is that hydrogen-deficient W-R stars are the progenitors of some H-poor supernova (SN) explosions of Types IIb, Ib, and Ic. A blue object, having luminosity and colors consistent with those of some W-R stars, has been recently identified at the location of a SN~Ib in pre-explosion images but has not yet been conclusively determined to have been the progenitor. Similar previous works have so far only resulted in nondetections. Comparison of early photometric observations of Type Ic supernovae with theoretical models suggests that the progenitor stars had radii <10^12 cm, as expected for some W-R stars. However, the hallmark signature of W-R stars, their emission-line spectra, cannot be probed by such studies. Here, we report the detection of strong emission lines in an early-time spectrum of SN 2013cu (iPTF13ast; Type IIb) obtained ~15.5 hr after explosion (flash spectroscopy). We identify W-R-like wind signatures suggesting a progenitor of the WN(h) subclass. The extent of this dense wind may indicate increased mass loss from the progenitor shortly prior to its explosion, consistent with recent theoretical predictions.
We have identified a luminous star at the position of supernova (SN) 2011dh/PTF11eon, in pre-SN archival, multi-band images of the nearby, nearly face-on galaxy Messier 51 (M51) obtained by the Hubble Space Telescope with the Advanced Camera for Surv eys. This identification has been confirmed, to the highest available astrometric precision, using a Keck-II adaptive-optics image. The available early-time spectra and photometry indicate that the SN is a stripped-envelope, core-collapse Type IIb, with a more compact progenitor (radius ~1e11 cm) than was the case for the well-studied SN IIb 1993J. We infer that the extinction to SN 2011dh and its progenitor arises from a low Galactic foreground contribution, and that the SN environment is of roughly solar metallicity. The detected object has absolute magnitude M_V^0 ~ -7.7 and effective temperature ~6000 K. The stars radius, ~1e13 cm, is more extended than what has been inferred for the SN progenitor. We speculate that the detected star is either an unrelated star very near the position of the actual progenitor, or, more likely, the progenitors companion in a mass-transfer binary system. The position of the detected star in a Hertzsprung-Russell diagram is consistent with an initial mass of 17--19 Msun. The light of this star could easily conceal, even in the ultraviolet, the presence of a stripped, compact, very hot (~1e5 K), nitrogen-rich Wolf-Rayet star progenitor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا