ترغب بنشر مسار تعليمي؟ اضغط هنا

Resurgent Deformation Quantisation

122   0   0.0 ( 0 )
 نشر من قبل Axel de Goursac
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a version of the complex Heisenberg algebra based on the idea of endless analytic continuation. In particular, we exhibit an integral formula for the product of resurgent operators with algebraic singularities. This algebra would be large enough to capture quantum effects that escape ordinary formal deformation quantisation.



قيم البحث

اقرأ أيضاً

We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields. The matter fields are represented by a mesoscopic polarization field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalized Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.
We investigate the quantization in the Heisenberg representation of a model which represents a simplification of the Hopfield model for dielectric media, where the electromagnetic field is replaced by a scalar field $phi$ and the role of the polariza tion field is played by a further scalar field $psi$. The model, which is quadratic in the fields, is still characterized by a nontrivial physical content, as the physical particles correspond to the polaritons of the standard Hopfield model of condensed matter physics. Causality is also taken into account and a discussion of the standard interaction representation is also considered.
We analyze the Moyal star product in deformation quantization from the resurgence theory perspective. By putting algebraic conditions on Borel transforms, one can define the space of ``algebro-resurgent series (a subspace of $1$-Gevrey formal series in $ihbar/2$ with coefficients in $C{q,p}$), which we show is stable under Moyal star product.
Deformation quantization conventionally is described in terms of multidifferential operators. Jet manifold technique is well-known provide the adequate formulation of theory of differential operators. We extended this formulation to the multidifferen tial ones, and consider their infinite order jet prolongation. The infinite order jet manifold is endowed with the canonical flat connection that provides the covariant formula of a deformation star-product.
144 - Albert Much 2016
We use a deformed differential structure to obtain a curved metric by a deformation quantization of the flat space-time. In particular, by setting the deformation parameters to be equal to physical constants we obtain the Friedmann-Robertson-Walker ( FRW) model for inflation and a deformed version of the FRW space-time. By calculating classical Einstein-equations for the extended space-time we obtain non-trivial solutions. Moreover, in this framework we obtain the Moyal-Weyl, i.e. a constant non-commutative space-time, by a consistency condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا