ﻻ يوجد ملخص باللغة العربية
We analyze the Moyal star product in deformation quantization from the resurgence theory perspective. By putting algebraic conditions on Borel transforms, one can define the space of ``algebro-resurgent series (a subspace of $1$-Gevrey formal series in $ihbar/2$ with coefficients in $C{q,p}$), which we show is stable under Moyal star product.
Using the formalism of quantizers and dequantizers, we show that the characters of irreducible unitary representations of finite and compact groups provide kernels for star products of complex-valued functions of the group elements. Examples of permu
A system of coupled kinetic transport equations for the Wigner distributions of a free variable mass Klein-Gordon field is derived. This set of equations is formally equivalent to the full wave equation for electromagnetic waves in nonlinear dispersi
We study a bilinear multiplication rule on 2x2 matrices which is intermediate between the ordinary matrix product and the Hadamard matrix product, and we relate this to the hyperbolic motion group of the plane.
Let $V$ be a finite dimensional inner product space over $mathbb{R}$ with dimension $n$, where $nin mathbb{N}$, $wedge^{r}V$ be the exterior algebra of $V$, the problem is to find $max_{| xi | = 1, | eta | = 1}| xi wedge eta |$ where $k,l$ $in mathbb
We construct a version of the complex Heisenberg algebra based on the idea of endless analytic continuation. In particular, we exhibit an integral formula for the product of resurgent operators with algebraic singularities. This algebra would be larg