ترغب بنشر مسار تعليمي؟ اضغط هنا

Deformation quantization on jet manifolds

81   0   0.0 ( 0 )
 نشر من قبل Gennady Sardanashvily
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Deformation quantization conventionally is described in terms of multidifferential operators. Jet manifold technique is well-known provide the adequate formulation of theory of differential operators. We extended this formulation to the multidifferential ones, and consider their infinite order jet prolongation. The infinite order jet manifold is endowed with the canonical flat connection that provides the covariant formula of a deformation star-product.

قيم البحث

اقرأ أيضاً

We give an explicit local formula for any formal deformation quantization, with separation of variables, on a Kahler manifold. The formula is given in terms of differential operators, parametrized by acyclic combinatorial graphs.
141 - Nima Moshayedi 2020
These notes give an introduction to the quantization procedure called geometric quantization. It gives a definition of the mathematical background for its understanding and introductions to classical and quantum mechanics, to differentiable manifolds , symplectic manifolds and the geometry of line bundles and connections. Moreover, these notes are endowed with several exercises and examples.
384 - Nima Moshayedi 2020
These are lecture notes for the course Poisson geometry and deformation quantization given by the author during the fall semester 2020 at the University of Zurich. The first chapter is an introduction to differential geometry, where we cover manifold s, tensor fields, integration on manifolds, Stokes theorem, de Rhams theorem and Frobenius theorem. The second chapter covers the most important notions of symplectic geometry such as Lagrangian submanifolds, Weinsteins tubular neighborhood theorem, Hamiltonian mechanics, moment maps and symplectic reduction. The third chapter gives an introduction to Poisson geometry where we also cover Courant structures, Dirac structures, the local splitting theorem, symplectic foliations and Poisson maps. The fourth chapter is about deformation quantization where we cover the Moyal product, $L_infty$-algebras, Kontsevichs formality theorem, Kontsevichs star product construction through graphs, the globalization approach to Kontsevichs star product and the operadic approach to formality. The fifth chapter is about the quantum field theoretic approach to Kontsevichs deformation quantization where we cover functional integral methods, the Moyal product as a path integral quantization, the Faddeev-Popov and BRST method for gauge theories, infinite-dimensional extensions, the Poisson sigma model, the construction of Kontsevichs star product through a perturbative expansion of the functional integral quantization for the Poisson sigma model for affine Poisson structures and the general construction.
146 - R. S. Ward 2018
Hopf solitons in the Skyrme-Faddeev system on $R^3$ typically have a complicated structure, in particular when the Hopf number Q is large. By contrast, if we work on a compact 3-manifold M, and the energy functional consists only of the Skyrme term ( the strong-coupling limit), then the picture simplifies. There is a topological lower bound $Egeq Q$ on the energy, and the local minima of E can look simple even for large Q. The aim here is to describe and investigate some of these solutions, when M is $S^3$, $T^3$ or $S^2 times S^1$. In addition, we review the more elementary baby-Skyrme system, with M being $S^2$ or $T^2$.
144 - Albert Much 2016
We use a deformed differential structure to obtain a curved metric by a deformation quantization of the flat space-time. In particular, by setting the deformation parameters to be equal to physical constants we obtain the Friedmann-Robertson-Walker ( FRW) model for inflation and a deformed version of the FRW space-time. By calculating classical Einstein-equations for the extended space-time we obtain non-trivial solutions. Moreover, in this framework we obtain the Moyal-Weyl, i.e. a constant non-commutative space-time, by a consistency condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا