ﻻ يوجد ملخص باللغة العربية
We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields. The matter fields are represented by a mesoscopic polarization field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalized Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.
We investigate the quantization in the Heisenberg representation of a model which represents a simplification of the Hopfield model for dielectric media, where the electromagnetic field is replaced by a scalar field $phi$ and the role of the polariza
The relativistic quantum Toda chain model is studied with the generalized algebraic Bethe Ansatz method. By employing a set of local gauge transformations, proper local vacuum states can be obtained for this model. The exact spectrum and eigenstates of the model are thus constructed simultaneously.
The path integral quantization method is applied to a relativistically covariant version of the Hopfield model, which represents a very interesting mesoscopic framework for the description of the interaction between quantum light and dielectric quant
We construct a version of the complex Heisenberg algebra based on the idea of endless analytic continuation. In particular, we exhibit an integral formula for the product of resurgent operators with algebraic singularities. This algebra would be larg
We present an exact two-particle solution of the Currie-Hill equations of Predictive Relativistic Mechanics in $1 + 1$ dimensional Minkowski space. The instantaneous accelerations are given in terms of elementary functions depending on the relative p