ﻻ يوجد ملخص باللغة العربية
We report on fabrication and characterization of ultra-thin suspended single crystalline flat silicon membranes with thickness down to 6 nm. We have developed a method to control the strain in the membranes by adding a strain compensating frame on the silicon membrane perimeter to avoid buckling of the released membranes. We show that by changing the properties of the frame the strain of the membrane can be tuned in controlled manner. Consequently, both the mechanical properties and the band structure can be engineered and the resulting membranes provide a unique laboratory to study low-dimensional electronic, photonic and phononic phenomena.
We present ultra-thin silicon membrane thermocouple bolometers suitable for fast and sensitive detection of low levels of thermal power and infrared radiation at room temperature. The devices are based on 40 nm-thick strain tuned single crystalline s
The specific heat of ultra-thin free-standing membranes is calculated using the elastic continuum model. We first obtain the dispersion relations of the discrete set of acoustic modes in the system. The specific heat is then calculated by summing ove
The tunnel photocurrent between a gold surface and a free-standing semiconducting thin film excited from the rear by above bandgap light has been measured as a function of applied bias, tunnel distance and excitation light power. The results are comp
As mechanical structures enter the nanoscale regime, the influence of van der Waals forces increases. Graphene is attractive for nanomechanical systems because its Youngs modulus and strength are both intrinsically high, but the mechanical behavior o
The increasing availability of a variety of two-dimensional materials has generated enormous growth in the field of nanoengineering and nanomechanics. Recent developments in thin film synthesis have enabled the fabrication of freestanding functional