ترغب بنشر مسار تعليمي؟ اضغط هنا

Calculation of the specific heat in ultra-thin free-standing silicon membranes

451   0   0.0 ( 0 )
 نشر من قبل Emigdio Ch\\'avez
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The specific heat of ultra-thin free-standing membranes is calculated using the elastic continuum model. We first obtain the dispersion relations of the discrete set of acoustic modes in the system. The specific heat is then calculated by summing over the discrete out-of-plane wavevector component and integrating over the continuous in-plane wavevector of these waves. In the low-temperature regime (T < 4 K), the flexural polarization is seen to have the highest contribution to the total specific heat. This leads to a linear dependence with temperature, resulting in a larger specific heat for the membrane compared to that of the bulk counterpart



قيم البحث

اقرأ أيضاً

We report on fabrication and characterization of ultra-thin suspended single crystalline flat silicon membranes with thickness down to 6 nm. We have developed a method to control the strain in the membranes by adding a strain compensating frame on th e silicon membrane perimeter to avoid buckling of the released membranes. We show that by changing the properties of the frame the strain of the membrane can be tuned in controlled manner. Consequently, both the mechanical properties and the band structure can be engineered and the resulting membranes provide a unique laboratory to study low-dimensional electronic, photonic and phononic phenomena.
Free-standing nanoribbons of InAs quantum membranes (QMs) transferred onto a (Si/Mo) multilayer mirror substrate are characterized by hard x-ray photoemission spectroscopy (HXPS), and by standing-wave HXPS (SW-HXPS). Information on the chemical compo sition and on the chemical states of the elements within the nanoribbons was obtained by HXPS and on the quantitative depth profiles by SW-HXPS. By comparing the experimental SW-HXPS rocking curves to x-ray optical calculations, the chemical depth profile of the InAs(QM) and its interfaces were quantitatively derived with angstrom precision. We determined that: i) the exposure to air induced the formation of an InAsO$_4$ layer on top of the stoichiometric InAs(QM); ii) the top interface between the air-side InAsO$_4$ and the InAs(QM) is not sharp, indicating that interdiffusion occurs between these two layers; iii) the bottom interface between the InAs(QM) and the native oxide SiO$_2$ on top of the (Si/Mo) substrate is abrupt. In addition, the valence band offset (VBO) between the InAs(QM) and the SiO$_2$/(Si/Mo) substrate was determined by HXPS. The value of $VBO = 0.2 pm 0.04$ eV is in good agreement with literature results obtained by electrical characterization, giving a clear indication of the formation of a well-defined and abrupt InAs/SiO$_2$ heterojunction. We have demonstrated that HXPS and SW-HXPS are non-destructive, powerful methods for characterizing interfaces and for providing chemical depth profiles of nanostructures, quantum membranes, and 2D layered materials.
179 - J. Ristein , S. Mammadov , 2011
We explain the robust p-type doping observed for quasi-free standing graphene on hexagonal silicon carbide by the spontaneous polarization of the substrate. This mechanism is based on a bulk property of SiC, unavoidable for any hexagonal polytype of the material and independent of any details of the interface formation. We show that sign and magnitude of the polarization are in perfect agreement with the doping level observed in the graphene layer. With this mechanism, models based on hypothetical acceptor-type defects as they are discussed so far are obsolete. The n-type doping of epitaxial graphene is explained conventionally by donor-like states associated with the buffer layer and its interface to the substrate which overcompensate the polarization doping.
Ferroelectric films usually have phase states and physical properties very different from those of bulk ferroelectrics. Here we propose free-standing ferroelectric-elastic multilayers as a bridge between these two material systems. Using a nonlinear thermodynamic theory, we determine phase states of such multilayers as a function of temperature, misfit strain, and volume fraction fi of ferroelectric material. The numerical calculations performed for two classical ferroelectrics - PbTiO3 and BaTiO3 - demonstrate that polarization states of multilayers in the limiting cases fi -> 0 and fi -> 1 coincide with those of thin films and bulk crystals. At intermediate volume fractions, however, the misfit strain-temperature phase diagrams of multilayers differ greatly from those of epitaxial films. Remarkably, a ferroelectric phase not existing in thin films and bulk crystals can be stabilized in BaTiO3 multilayers. Owing to additional tunable parameter and reduced clamping, ferroelectric multilayers may be superior for a wide range of device applications.
We present ultra-thin silicon membrane thermocouple bolometers suitable for fast and sensitive detection of low levels of thermal power and infrared radiation at room temperature. The devices are based on 40 nm-thick strain tuned single crystalline s ilicon membranes shaped into heater/absorber area and narrow n- and p-doped beams, which operate as the thermocouple. The electro-thermal characterization of the devices reveal noise equivalent power of 13 pW/rtHz and thermal time constant of 2.5 ms. The high sensitivity of the devices is due to the high Seebeck coefficient of 0.39 mV/K and reduction of thermal conductivity of the Si beams from the bulk value. The bolometers operate in the Johnson-Nyquist noise limit of the thermocouple, and the performance improvement towards the operation close to the temperature fluctuation limit is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا