ﻻ يوجد ملخص باللغة العربية
The tunnel photocurrent between a gold surface and a free-standing semiconducting thin film excited from the rear by above bandgap light has been measured as a function of applied bias, tunnel distance and excitation light power. The results are compared with the predictions of a model which includes the bias dependence of the tunnel barrier height and the bias-induced decrease of surface recombination velocity. It is found that i) the tunnel photocurrent from the conduction band dominates that from surface states. ii) At large tunnel distance the exponential bias dependence of the current is explained by that of the tunnel barrier height, while at small distance the change of surface recombination velocity is dominant.
We report on fabrication and characterization of ultra-thin suspended single crystalline flat silicon membranes with thickness down to 6 nm. We have developed a method to control the strain in the membranes by adding a strain compensating frame on th
Spectra of the differential tunneling conductivity for ultrathin lead films grown on Si(111)7x7 single crystals with a thickness from 9 to 50 monolayers have been studied by low-temperature scanning tunneling microscopy and spectroscopy. The presence
Electrical field control of the carrier density of topological insulators (TI) has greatly expanded the possible practical use of these materials. However, the combination of low temperature local probe studies and a gate tunable TI device remains ch
The spin dependence of the photoelectron tunnel current from free standing GaAs films into out-of- plane magnetized Cobalt films is demonstrated. The measured spin asymmetry (A) resulting from a change in light helicity, reaches +/- 6% around zero ap
We showed how a structural modification of graphene, which gives a carbon allotrope graphyne, can induce an energy gap at the K point of the Brillouin zone. Upon adsorption on metallic surfaces, the same mechanism is responsible for the further modif