ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of correlation strength in KxFe(2-y)Se2 superconductor doped with S

39   0   0.0 ( 0 )
 نشر من قبل Kefeng Wang Dr.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the evolution of thermal transport properties of iron-based superconductor K$_x$Fe$_{2-y}$Se$_2$ with sulfur substitution at Se sites. Sulfur doping suppresses the superconducting $T_c$ as well as the Seebeck coefficient. The Seebeck coefficient of all crystals in the low temperature range can be described very well by diffusive thermoelectric response model. The zero-temperature extrapolated value of Seebeck coefficient divided by temperature $S/T$ gradually decreases from $-0.48 mu V/K^2$ to a very small value $sim$ 0.03 $mu$V/K$^2$ where $T_c$ is completely suppressed. The normal state electron Sommerfeld term ($gamma_n$) of specific heat also decreases with the increase of sulfur content. The dcrease of $S/T$ and $gamma_n$ reflects a suppression of the density of states at the Fermi energy, or a change in the Fermi surface that would induce the suppression of correlation strength.

قيم البحث

اقرأ أيضاً

Two iron-chalcogenide superconductors Li(x)[C5H5N](y)Fe(2-z)Se2 and Cs(x)Fe(2-z)Se2 in the as-prepared and annealed state have been investigated by means of the Moessbauer spectroscopy versus temperature. Multi-component spectra are obtained. One can see a non-magnetic component due to iron located in the unperturbed Fe-Se sheets responsible for superconductivity. Remaining components are magnetically ordered even at room temperature. There is some magnetically ordered iron in Fe-Se sheets perturbed by presence of the iron vacancies. Additionally, one can see iron dispersed between sheets in the form of magnetically ordered high spin trivalent ions, some clusters of above ions, and in the case of pyridine intercalated compound in the form of alpha-Fe precipitates. Pyridine intercalated sample shows traces of superconductivity in the as-prepared state, while cesium intercalated sample in the as-prepared state does not show any superconductivity. Superconductors with transition temperatures being 40 K and 25 K, respectively, are obtained upon annealing. Annealing leads to removal/ordering of the iron vacancies within Fe-Se sheets, while clusters of alpha-Fe grow in the pyridine intercalated sample.
We report neutron inelastic scattering measurements on the normal and superconducting states of single-crystalline Cs0.8Fe1.9Se2. Consistent with previous measurements on Rb(x)Fe(2-y)Se2, we observe two distinct spin excitation signals: (i) spin-wave excitations characteristic of the block antiferromagnetic order found in insulating A(x)Fe(2-y)Se2 compounds, and (ii) a resonance-like magnetic peak localized in energy at 11 meV and at an in-plane wave vector of (0.25, 0.5). The resonance peak increases below Tc = 27 K, and has a similar absolute intensity to the resonance peaks observed in other Fe-based superconductors. The existence of a magnetic resonance in the spectrum of Rb(x)Fe(2-y)Se2 and now of Cs(x)Fe(2-y)Se2 suggests that this is a common feature of superconductivity in this family. The low energy spin-wave excitations in Cs0.8Fe1.9Se2 show no measurable response to superconductivity, consistent with the notion of spatially separate magnetic and superconducting phases.
We consider the lifetime of quasi-particles in a d-wave superconductor due to scattering from antiferromagnetic spin-fluctuations, and explicitly separate the contribution from Umklapp processes which determines the electrical conductivity. Results f or the temperature dependence of the total scattering rate and the Umklapp scattering rate are compared with relaxation rates obtained from thermal and microwave conductivity measurements, respectively.
255 - G. Lamura , T. Shiroka , P. Bonfa 2013
We report on the magnetic and superconducting properties of LaO0.5F0.5BiS2 by means of zero- (ZF) and transverse-field (TF) muon-spin spectroscopy measurements (uSR). Contrary to previous results on iron-based superconductors, measurements in zero fi eld demonstrate the absence of magnetically ordered phases. TF-uSR data give access to the superfluid density, which shows a marked 2D character with a dominant s-wave temperature behavior. The field dependence of the magnetic penetration depth confirms this finding and further suggests the presence of an anisotropic superconducting gap.
The iron chalcogenide Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ on the Te-rich side is known to exhibit the strongest electron correlations among the Fe-based superconductors, and is non-superconducting for $x$ < 0.1. In order to understand the origin of such beh aviors, we have performed ARPES studies of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ ($x$ = 0, 0.1, 0.2, and 0.4). The obtained mass renormalization factors for different energy bands are qualitatively consistent with DFT + DMFT calculations. Our results provide evidence for strong orbital dependence of mass renormalization, and systematic data which help us to resolve inconsistencies with other experimental data. The unusually strong orbital dependence of mass renormalization in Te-rich Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ arises from the dominant contribution to the Fermi surface of the $d_{xy}$ band, which is the most strongly correlated and may contribute to the suppression of superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا