ﻻ يوجد ملخص باللغة العربية
Two iron-chalcogenide superconductors Li(x)[C5H5N](y)Fe(2-z)Se2 and Cs(x)Fe(2-z)Se2 in the as-prepared and annealed state have been investigated by means of the Moessbauer spectroscopy versus temperature. Multi-component spectra are obtained. One can see a non-magnetic component due to iron located in the unperturbed Fe-Se sheets responsible for superconductivity. Remaining components are magnetically ordered even at room temperature. There is some magnetically ordered iron in Fe-Se sheets perturbed by presence of the iron vacancies. Additionally, one can see iron dispersed between sheets in the form of magnetically ordered high spin trivalent ions, some clusters of above ions, and in the case of pyridine intercalated compound in the form of alpha-Fe precipitates. Pyridine intercalated sample shows traces of superconductivity in the as-prepared state, while cesium intercalated sample in the as-prepared state does not show any superconductivity. Superconductors with transition temperatures being 40 K and 25 K, respectively, are obtained upon annealing. Annealing leads to removal/ordering of the iron vacancies within Fe-Se sheets, while clusters of alpha-Fe grow in the pyridine intercalated sample.
We report neutron inelastic scattering measurements on the normal and superconducting states of single-crystalline Cs0.8Fe1.9Se2. Consistent with previous measurements on Rb(x)Fe(2-y)Se2, we observe two distinct spin excitation signals: (i) spin-wave
Inelastic neutron scattering is employed to study the reciprocal-space structure and dispersion of magnetic excitations in the normal and superconducting states of single-crystalline Rb0.8Fe1.6Se2. We show that the recently discovered magnetic resona
Pressure dependence of the electronic and crystal structures of K$_{x}$Fe$_{2-y}$Se$_{2}$, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data
We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic structure of Ba(Fe1-x-yCoxMny)2As2 for x=0.06 and 0<=y <=0.07. From ARPES we derive that the substitution of Fe by Mn does no
The (Li$_{1-x}$Fe$_{x}$OH)FeSe superconductor has been suspected to exhibit long-range magnetic ordering due to Fe substitution in the LiOH layer. However, no direct observation such as magnetic reflection from neutron diffraction has be reported. He