ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-particle Lifetimes in a d_{x^2-y^2} Superconductor

69   0   0.0 ( 0 )
 نشر من قبل Daniel Duffy
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the lifetime of quasi-particles in a d-wave superconductor due to scattering from antiferromagnetic spin-fluctuations, and explicitly separate the contribution from Umklapp processes which determines the electrical conductivity. Results for the temperature dependence of the total scattering rate and the Umklapp scattering rate are compared with relaxation rates obtained from thermal and microwave conductivity measurements, respectively.



قيم البحث

اقرأ أيضاً

Low energy polarized electronic Raman scattering of the electron doped superconductor Nd_1.85Ce_0.15CuO_4 (T_c=22 K) has revealed a nonmonotonic d_{x^2-y^2} superconducting order parameter. It has a maximum gap of 4.4 k_BT_c at Fermi surface intersec tions with antiferromagnetic Brillouin zone (the ``hot spots) and a smaller gap of 3.3 k_BT_c at fermionic Brillouin zone boundaries. The gap enhancement in the vicinity of the ``hot spots emphasizes role of antiferromagnetic fluctuations and similarity in the origin of superconductivity for electron- and hole-doped cuprates.
Many cuprate superconductors possess an unusual charge-ordered phase that is characterized by an approximate $d_{x^2-y^2}$ intra-unit cell form factor and a finite modulation wavevector $bq^ast$. We study the effects impurities on this charge ordered phase via a single-band model in which bond order is the analogue of charge order in the cuprates. Impurities are assumed to be pointlike and are treated within the self-consistent t-matrix approximation (SCTMA). We show that suppression of bond order by impurities occurs through the local disruption of the $d_{x^2-y^2}$ form factor near individual impurities. Unlike $d$-wave superconductors, where the sensitivity of $T_c$ to impurities can be traced to a vanishing average of the $d_{x^2-y^2}$ order parameter over the Fermi surface, the response of bond order to impurities is dictated by a few Fermi surface hotspots. The bond order transition temperature $T_mathrm{bo}$ thus follows a different universal dependence on impurity concentration $n_i$ than does the superconducting $T_c$. In particular, $T_mathrm{bo}$ decreases more rapidly than $T_c$ with increasing $n_i$ when there is a nonzero Fermi surface curvature at the hotspots. Based on experimental evidence that the pseudogap is insensitive to Zn doping, we conclude that a direct connection between charge order and the pseudogap is unlikely. Furthermore, the enhancement of stripe correlations in the La-based cuprates by Zn doping is evidence that this charge order is also distinct from stripes.
Motivated by the recent observation of superconductivity in strontium doped NdNiO$_2$, we study the superconducting instabilities in this system from various vantage points. Starting with first-principles calculations, we construct two distinct tight -binding models, a simpler single-orbital as well as a three-orbital model, both of which capture the key low energy degrees of freedom to varying degree of accuracy. We study superconductivity in both models using the random phase approximation (RPA). We then analyze the problem at stronger coupling, and study the dominant pairing instability in the associated t-J model limit. In all instances, the dominant pairing tendency is in the $d_{x^2-y^2}$ channel, analogous to the cuprate superconductors.
We study optimally doped Bi-2212 ($T_textrm{c}=96$~K) using femtosecond time- and angle-resolved photoelectron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-particle lifetimes measured by equilibrium photoe mission. The population lifetimes deviate from the single-particle lifetimes in the low excitation limit by one to two orders of magnitude. Fundamental considerations of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only electron-phonon scattering they should converge in the low-temperature, low-fluence limit. The qualitative disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon interactions play a significant role in the electron dynamics of cuprate superconductors.
We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic structure of Ba(Fe1-x-yCoxMny)2As2 for x=0.06 and 0<=y <=0.07. From ARPES we derive that the substitution of Fe by Mn does no t lead to hole doping, indicating a localization of the induced holes. An evaluation of the measured spectral function does not indicate a diverging effective mass or scattering rate near optimal doping. Thus the present ARPES results indicate a continuous evolution of the quasiparticle interaction and therefore question previous quantum critical scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا