ﻻ يوجد ملخص باللغة العربية
We report neutron inelastic scattering measurements on the normal and superconducting states of single-crystalline Cs0.8Fe1.9Se2. Consistent with previous measurements on Rb(x)Fe(2-y)Se2, we observe two distinct spin excitation signals: (i) spin-wave excitations characteristic of the block antiferromagnetic order found in insulating A(x)Fe(2-y)Se2 compounds, and (ii) a resonance-like magnetic peak localized in energy at 11 meV and at an in-plane wave vector of (0.25, 0.5). The resonance peak increases below Tc = 27 K, and has a similar absolute intensity to the resonance peaks observed in other Fe-based superconductors. The existence of a magnetic resonance in the spectrum of Rb(x)Fe(2-y)Se2 and now of Cs(x)Fe(2-y)Se2 suggests that this is a common feature of superconductivity in this family. The low energy spin-wave excitations in Cs0.8Fe1.9Se2 show no measurable response to superconductivity, consistent with the notion of spatially separate magnetic and superconducting phases.
Two iron-chalcogenide superconductors Li(x)[C5H5N](y)Fe(2-z)Se2 and Cs(x)Fe(2-z)Se2 in the as-prepared and annealed state have been investigated by means of the Moessbauer spectroscopy versus temperature. Multi-component spectra are obtained. One can
Inelastic neutron scattering is employed to study the reciprocal-space structure and dispersion of magnetic excitations in the normal and superconducting states of single-crystalline Rb0.8Fe1.6Se2. We show that the recently discovered magnetic resona
Spin excitations stemming from the metallic phase of the ferrochalcogenide superconductor K(0.77)Fe(1.85)Se(2) (T_c=32 K) were mapped out in the ab plane by means of the time-of-flight neutron spectroscopy. We observed a magnetic resonant mode at Q_r
Recent discovery of superconducting (SC) ternary iron selenides has block antiferromagentic (AFM) long range order. Many experiments show possible mesoscopic phase separation of the superconductivity and antiferromagnetism, while the neutron experime
Using inelastic neutron scattering, we show that the onset of superconductivity in underdoped Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ coincides with a crossover from well-defined spin waves to overdamped and diffusive spin excitations. This crossover oc