ﻻ يوجد ملخص باللغة العربية
The iron chalcogenide Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ on the Te-rich side is known to exhibit the strongest electron correlations among the Fe-based superconductors, and is non-superconducting for $x$ < 0.1. In order to understand the origin of such behaviors, we have performed ARPES studies of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ ($x$ = 0, 0.1, 0.2, and 0.4). The obtained mass renormalization factors for different energy bands are qualitatively consistent with DFT + DMFT calculations. Our results provide evidence for strong orbital dependence of mass renormalization, and systematic data which help us to resolve inconsistencies with other experimental data. The unusually strong orbital dependence of mass renormalization in Te-rich Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ arises from the dominant contribution to the Fermi surface of the $d_{xy}$ band, which is the most strongly correlated and may contribute to the suppression of superconductivity.
Using angle-resolved photoemission spectroscopy we have studied the low-energy electronic structure and the Fermi surface topology of Fe$_{1+y}$Te$_{1-x}$Se$_x$ superconductors. Similar to the known iron pnictides we observe hole pockets at the cente
We present a systematic study of the nematic fluctuations in the iron chalcogenide superconductor Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ ($0 leq x leq 0.53$) using the elastoresistivity technique. Near $x = 0$, in proximity to the double-stripe magnetic order
We report an investigation of the lattice dynamical properties in a range of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ compounds, with special emphasis on the c-axis polarized vibration of Fe with B$_{1g}$ symmetry, a Raman active mode common to all families of F
We compare the superconducting phase-diagram under high magnetic fields (up to $H = 45$ T) of Fe$_{1+y}$Se$_{0.4}$Te$_{0.6}$ single crystals originally grown by the Bridgman-Stockbarger (BRST) technique, which were annealed to display narrow supercon
Neutron scattering has played a significant role in characterizing magnetic and structural correlations in Fe$_{1+y}$Te$_{1-x}$Se$_x$ and their connections with superconductivity. Here we review several key aspects of the physics of iron chalcogenide