ﻻ يوجد ملخص باللغة العربية
We investigate the persistence properties of critical d-dimensional systems relaxing from an initial state with non-vanishing order parameter (e.g., the magnetization in the Ising model), focusing on the dynamics of the global order parameter of a d-dimensional manifold. The persistence probability P(t) shows three distinct long-time decays depending on the value of the parameter zeta = (D-2+eta)/z which also controls the relaxation of the persistence probability in the case of a disordered initial state (vanishing order parameter) as a function of the codimension D = d-d and of the critical exponents z and eta. We find that the asymptotic behavior of P(t) is exponential for zeta > 1, stretched exponential for 0 <= zeta <= 1, and algebraic for zeta < 0. Whereas the exponential and stretched exponential relaxations are not affected by the initial value of the order parameter, we predict and observe a crossover between two different power-law decays when the algebraic relaxation occurs, as in the case d=d of the global order parameter. We confirm via Monte Carlo simulations our analytical predictions by studying the magnetization of a line and of a plane of the two- and three-dimensional Ising model, respectively, with Glauber dynamics. The measured exponents of the ultimate algebraic decays are in a rather good agreement with our analytical predictions for the Ising universality class. In spite of this agreement, the expected scaling behavior of the persistence probability as a function of time and of the initial value of the order parameter remains problematic. In this context, the non-equilibrium dynamics of the O(n) model in the limit n->infty and its subtle connection with the spherical model is also discussed in detail.
We investigate the global persistence properties of critical systems relaxing from an initial state with non-vanishing value of the order parameter (e.g., the magnetization in the Ising model). The persistence probability of the global order paramete
The persistence behavior for fluctuating steps on the $Si(111)$ $(sqrt3 times sqrt3)R30^{0} - Al$ surface was determined by analyzing time-dependent STM images for temperatures between 770 and 970K. The measured persistence probability follows a powe
The collective behaviour of statistical systems close to critical points is characterized by an extremely slow dynamics which, in the thermodynamic limit, eventually prevents them from relaxing to an equilibrium state after a change in the thermodyna
We consider an out-of-equilibrium lattice model consisting of 2D discrete rotators, in contact with heat reservoirs at different temperatures. The equilibrium counterpart of such model, the clock-model, exhibits three phases; a low-temperature ordere
We present a scheme to accurately calculate the persistence probabilities on sequences of $n$ heights above a level $h$ from the measured $n+2$ points of the height-height correlation function of a fluctuating interface. The calculated persistence pr