ﻻ يوجد ملخص باللغة العربية
The collective behaviour of statistical systems close to critical points is characterized by an extremely slow dynamics which, in the thermodynamic limit, eventually prevents them from relaxing to an equilibrium state after a change in the thermodynamic control parameters. The non-equilibrium evolution following this change displays some of the features typically observed in glassy materials, such as ageing, and it can be monitored via dynamic susceptibilities and correlation functions of the order parameter, the scaling behaviour of which is characterized by universal exponents, scaling functions, and amplitude ratios. This universality allows one to calculate these quantities in suitable simplified models and field-theoretical methods are a natural and viable approach for this analysis. In addition, if a statistical system is spatially confined, universal Casimir-like forces acting on the confining surfaces emerge and they build up in time when the temperature of the system is tuned to its critical value. We review here some of the theoretical results that have been obtained in recent years for universal quantities, such as the fluctuation-dissipation ratio, associated with the non-equilibrium critical dynamics, with particular focus on the Ising model with Glauber dynamics in the bulk. The non-equilibrium dynamics of the Casimir force acting in a film is discussed within the Gaussian model.
We propose entanglement negativity as a fine-grained probe of measurement-induced criticality. We motivate this proposal in stabilizer states, where for two disjoint subregions, comparing their mutual negativity and their mutual information leads to
This article gives a short description of pattern formation and coarsening phenomena and focuses on recent experimental and theoretical advances in these fields. It serves as an introduction to phase ordering kinetics and it will appear in the specia
We investigate the persistence properties of critical d-dimensional systems relaxing from an initial state with non-vanishing order parameter (e.g., the magnetization in the Ising model), focusing on the dynamics of the global order parameter of a d-
We consider an out-of-equilibrium lattice model consisting of 2D discrete rotators, in contact with heat reservoirs at different temperatures. The equilibrium counterpart of such model, the clock-model, exhibits three phases; a low-temperature ordere
We consider a dynamic protocol for quantum many-body systems, which enables to study the interplay between unitary Hamiltonian driving and random local projective measurements. While the unitary dynamics tends to increase entanglement, local measurem