ﻻ يوجد ملخص باللغة العربية
We consider an out-of-equilibrium lattice model consisting of 2D discrete rotators, in contact with heat reservoirs at different temperatures. The equilibrium counterpart of such model, the clock-model, exhibits three phases; a low-temperature ordered phase, a quasi-liquid phase, and a high-temperature disordered phase, with two corresponding phase transitions. In the out-of-equilibrium model the simultaneous breaking of spatial symmetry and thermal equilibrium give rise to directed rotation of the spin variables. In this regime the system behaves as a thermal machine converting heat currents into motion. In order to quantify the susceptibility of the machine to the thermodynamic force driving it out-of-equilibrium, we introduce and study a dynamical response function. We show that the optimal operational regime for such a thermal machine occurs when the out-of-equilibrium disturbance is applied around the critical temperature at the boundary between the first two phases, namely where the system is mostly susceptible to external thermodynamic forces and exhibits a sharper transition. We thus argue that critical fluctuations in a system of interacting motors can be exploited to enhance the machine overall dynamic and thermodynamic performances.
A 1D model of interacting particles moving over a periodic substrate and in a position dependent temperature profile is considered. When the substrate and the temperature profile are spatially asymmetric a center-of-mass velocity develops, correspond
We theoretically investigate the non-equilibrium quantum phase transition in a generic setup: the pseudogap Kondo model where a quantum dot couples to two-left (L) and right (R)-voltage-biased fermionic leads with power-law density of states (DOS) wi
We investigate the possibility of extending the notion of temperature in a stochastic model for the RNA/protein folding driven out of equilibrium. We simulate the dynamics of a small RNA hairpin subject to an external pulling force, which is time-dep
This paper provides an introduction to some stochastic models of lattice gases out of equilibrium and a discussion of results of various kinds obtained in recent years. Although these models are different in their microscopic features, a unified pict
The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-