ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Persistence Probability for Fluctuating Steps

129   0   0.0 ( 0 )
 نشر من قبل Magdalena Constantin
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The persistence behavior for fluctuating steps on the $Si(111)$ $(sqrt3 times sqrt3)R30^{0} - Al$ surface was determined by analyzing time-dependent STM images for temperatures between 770 and 970K. The measured persistence probability follows a power law decay with an exponent of $theta=0.77 pm 0.03$. This is consistent with the value of $theta= 3/4$ predicted for attachment/detachment limited step kinetics. If the persistence analysis is carried out in terms of return to a fixed reference position, the measured persistence probability decays exponentially. Numerical studies of the Langevin equation used to model step motion corroborate the experimental observations.



قيم البحث

اقرأ أيضاً

78 - J. Krug 1997
Numerical and analytic results for the exponent theta describing the decay of the first return probability of an interface to its initial height are obtained for a large class of linear Langevin equations. The models are parametrized by the dynamic r oughness exponent beta, with 0 < beta < 1; for beta = 1/2 the time evolution is Markovian. Using simulations of solid-on-solid models, of the discretized continuum equations as well as of the associated zero-dimensional stationary Gaussian process, we address two problems: The return of an initially flat interface, and the return to an initial state with fully developed steady state roughness. The two problems are shown to be governed by different exponents. For the steady state case we point out the equivalence to fractional Brownian motion, which has a return exponent theta_S = 1 - beta. The exponent theta_0 for the flat initial condition appears to be nontrivial. We prove that theta_0 to infty for beta to 0, theta_0 geq theta_S for beta < 1/2 and theta_0 leq theta_S for beta > 1/2, and calculate theta_{0,S} perturbatively to first order in an expansion around the Markovian case beta = 1/2. Using the exact result theta_S = 1 - beta, accurate upper and lower bounds on theta_0 can be derived which show, in particular, that theta_0 geq (1 - beta)^2/beta for small beta.
We report the results of numerical investigations of the steady-state (SS) and finite-initial-conditions (FIC) spatial persistence and survival probabilities for (1+1)--dimensional interfaces with dynamics governed by the nonlinear Kardar--Parisi--Zh ang (KPZ) equation and the linear Edwards--Wilkinson (EW) equation with both white (uncorrelated) and colored (spatially correlated) noise. We study the effects of a finite sampling distance on the measured spatial persistence probability and show that both SS and FIC persistence probabilities exhibit simple scaling behavior as a function of the system size and the sampling distance. Analytical expressions for the exponents associated with the power-law decay of SS and FIC spatial persistence probabilities of the EW equation with power-law correlated noise are established and numerically verified.
We report numerical and analytic results for the spatial survival probability for fluctuating one-dimensional interfaces with Edwards-Wilkinson or Kardar-Parisi-Zhang dynamics in the steady state. Our numerical results are obtained from analysis of s teady-state profiles generated by integrating a spatially discretized form of the Edwards-Wilkinson equation to long times. We show that the survival probability exhibits scaling behavior in its dependence on the system size and the `sampling interval used in the measurement for both `steady-state and `finite initial conditions. Analytic results for the scaling functions are obtained from a path-integral treatment of a formulation of the problem in terms of one-dimensional Brownian motion. A `deterministic approximation is used to obtain closed-form expressions for survival probabilities from the formally exact analytic treatment. The resulting approximate analytic results provide a fairly good description of the numerical data.
We investigate the persistence properties of critical d-dimensional systems relaxing from an initial state with non-vanishing order parameter (e.g., the magnetization in the Ising model), focusing on the dynamics of the global order parameter of a d- dimensional manifold. The persistence probability P(t) shows three distinct long-time decays depending on the value of the parameter zeta = (D-2+eta)/z which also controls the relaxation of the persistence probability in the case of a disordered initial state (vanishing order parameter) as a function of the codimension D = d-d and of the critical exponents z and eta. We find that the asymptotic behavior of P(t) is exponential for zeta > 1, stretched exponential for 0 <= zeta <= 1, and algebraic for zeta < 0. Whereas the exponential and stretched exponential relaxations are not affected by the initial value of the order parameter, we predict and observe a crossover between two different power-law decays when the algebraic relaxation occurs, as in the case d=d of the global order parameter. We confirm via Monte Carlo simulations our analytical predictions by studying the magnetization of a line and of a plane of the two- and three-dimensional Ising model, respectively, with Glauber dynamics. The measured exponents of the ultimate algebraic decays are in a rather good agreement with our analytical predictions for the Ising universality class. In spite of this agreement, the expected scaling behavior of the persistence probability as a function of time and of the initial value of the order parameter remains problematic. In this context, the non-equilibrium dynamics of the O(n) model in the limit n->infty and its subtle connection with the spherical model is also discussed in detail.
We present a scheme to accurately calculate the persistence probabilities on sequences of $n$ heights above a level $h$ from the measured $n+2$ points of the height-height correlation function of a fluctuating interface. The calculated persistence pr obabilities compare very well with the measured persistence probabilities of a fluctuating phase-separated colloidal interface for the whole experimental range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا