ﻻ يوجد ملخص باللغة العربية
We investigate the global persistence properties of critical systems relaxing from an initial state with non-vanishing value of the order parameter (e.g., the magnetization in the Ising model). The persistence probability of the global order parameter displays two consecutive regimes in which it decays algebraically in time with two distinct universal exponents. The associated crossover is controlled by the initial value m_0 of the order parameter and the typical time at which it occurs diverges as m_0 vanishes. Monte-Carlo simulations of the two-dimensional Ising model with Glauber dynamics display clearly this crossover. The measured exponent of the ultimate algebraic decay is in rather good agreement with our theoretical predictions for the Ising universality class.
We investigate the persistence properties of critical d-dimensional systems relaxing from an initial state with non-vanishing order parameter (e.g., the magnetization in the Ising model), focusing on the dynamics of the global order parameter of a d-
The transition between ergodic and many-body localized phases is expected to occur via an avalanche mechanism, in which emph{ergodic bubbles} that arise due to local fluctuations in system properties thermalize their surroundings leading to delocaliz
Quantum critical points in quasiperiodic magnets can realize new universality classes, with critical properties distinct from those of clean or disordered systems. Here, we study quantum phase transitions separating ferromagnetic and paramagnetic pha
We perform Monte Carlo simulations to determine the average excluded area $<A_{ex}>$ of randomly oriented squares, randomly oriented widthless sticks and aligned squares in two dimensions. We find significant differences between our results for rando
Quasiperiodic systems are aperiodic but deterministic, so their critical behavior differs from that of clean systems as well as disordered ones. Quasiperiodic criticality was previously understood only in the special limit where the couplings follow