ترغب بنشر مسار تعليمي؟ اضغط هنا

Scanning Tunneling Microscopy of Gate Tunable Topological Insulator Bi2Se3 Thin Films

200   0   0.0 ( 0 )
 نشر من قبل Joseph Stroscio
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrical field control of the carrier density of topological insulators (TI) has greatly expanded the possible practical use of these materials. However, the combination of low temperature local probe studies and a gate tunable TI device remains challenging. We have overcome this limitation by scanning tunneling microscopy and spectroscopy measurements on in-situ molecular beam epitaxy growth of Bi2Se3 films on SrTiO3 substrates with pre-patterned electrodes. Using this gating method, we are able to shift the Fermi level of the top surface states by 250 meV on a 3 nm thick Bi2Se3 device. We report field effect studies of the surface state dispersion, band gap, and electronic structure at the Fermi level.



قيم البحث

اقرأ أيضاً

Topological insulator nanoribbons (TI NRs) provide a useful platform to explore the phase-coherent quantum electronic transport of topological surface states, which is crucial for the development of topological quantum devices. When applied with an a xial magnetic field, the TI NR exhibits magnetoconductance (MC) oscillations with a flux period of h/e, i.e., Aharonov-Bohm (AB) oscillations, and h/2e, i.e., Altshuler-Aronov-Spivak (AAS) oscillations. Herein, we present an extensive study of the AB and AAS oscillations in Sb doped Bi$_2$Se$_3$ TI NR as a function of the gate voltage, revealing phase-alternating topological AB oscillations. Moreover, the ensemble-averaged fast Fourier transform analysis on the Vg dependent MC curves indicates the suppression of the quantum interference oscillation amplitudes near the Dirac point, which is attributed to the suppression of the phase coherence length within the low carrier density region. The weak antilocalization analysis on the perpendicular MC curves confirms the idea of the suppressed coherence length near the Dirac point in the TI NR.
162 - Can-Li Song , Lili Wang , Ke He 2015
Scanning tunneling microscopy and spectroscopy have been used to investigate the femtosecond dynamics of Dirac fermions in the topological insulator Bi$_2$Se$_3$ ultrathin films. At two-dimensional limit, bulk electrons becomes quantized and the quan tization can be controlled by film thickness at single quintuple layer level. By studying the spatial decay of standing waves (quasiparticle interference patterns) off steps, we measure directly the energy and film thickness dependence of phase relaxation length $l_{phi}$ and inelastic scattering lifetime $tau$ of topological surface-state electrons. We find that $tau$ exhibits a remarkable $(E-E_F)^{-2}$ energy dependence and increases with film thickness. We show that the features revealed are typical for electron-electron scattering between surface and bulk states.
Dynamic manipulation of magnetism in topological materials is demonstrated here via a Floquet engineering approach using circularly polarized light. Increasing the strength of the laser field, besides the expected topological phase transition, the ma gnetically doped topological insulator thin film also undergoes a magnetic phase transition from ferromagnetism to paramagnetism, whose critical behavior strongly depends on the quantum quenching. In sharp contrast to the equilibrium case, the non-equilibrium Curie temperatures vary for different time scale and experimental setup, not all relying on change of topology. Our discoveries deepen the understanding of the relationship between topology and magnetism in the non-equilibrium regime and extend optoelectronic device applications to topological materials.
Combining the ability to prepare high-quality, intrinsic Bi$_2$Te$_3$ topological insulator thin films of low carrier density with in-situ protective capping, we demonstrate a pronounced, gate-tunable change in transport properties of Bi$_2$Te$_3$ th in films. Using a back-gate, the carrier density is tuned by a factor of $sim 7$ in Al$_2$O$_3$ capped Bi$_2$Te$_3$ sample and by a factor of $sim 2$ in Te capped Bi$_2$Te$_3$ films. We achieve full depletion of bulk carriers, which allows us to access the topological transport regime dominated by surface state conduction. When the Fermi level is placed in the bulk band gap, we observe the presence of two coherent conduction channels associated with the two decoupled surfaces. Our magnetotransport results show that the combination of capping layers and electrostatic tuning of the Fermi level provide a technological platform to investigate the topological properties of surface states in transport experiments and pave the way towards the implementation of a variety of topological quantum devices.
Understanding the spin-texture behavior of boundary modes in ultrathin topological insulator films is critically essential for the design and fabrication of functional nano-devices. Here by using spin-resolved photoemission spectroscopy with p-polari zed light in topological insulator Bi2Se3 thin films, we report tunneling-dependent evolution of spin configuration in topological insulator thin films across the metal-to-insulator transition. We observe strongly binding energy- and wavevector-dependent spin polarization for the topological surface electrons in the ultra-thin gapped-Dirac-cone limit. The polarization decreases significantly with enhanced tunneling realized systematically in thin insulating films, whereas magnitude of the polarization saturates to the bulk limit faster at larger wavevectors in thicker metallic films. We present a theoretical model which captures this delicate relationship between quantum tunneling and Fermi surface spin polarization. Our high-resolution spin-based spectroscopic results suggest that the polarization current can be tuned to zero in thin insulating films forming the basis for a future spin-switch nano-device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا