ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphyne on metallic surfaces: an improved graphene

121   0   0.0 ( 0 )
 نشر من قبل Zeljko Crljen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We showed how a structural modification of graphene, which gives a carbon allotrope graphyne, can induce an energy gap at the K point of the Brillouin zone. Upon adsorption on metallic surfaces, the same mechanism is responsible for the further modification of the energy gap which occurs via the charge transfer mechanism. We performed the calculation based on the density functional theory with the novel non-local vdW-DF correlation of the adsorption of graphyne on Cu(111), Ni(111) and Co(0001) surfaces and showed the dependence of the gap change on the charge transfer in the system. The binding of graphyne appears to be stronger than of graphene on the same surfaces.



قيم البحث

اقرأ أيضاً

143 - D. Vu , S. Arscott , E. Peytavit 2010
The tunnel photocurrent between a gold surface and a free-standing semiconducting thin film excited from the rear by above bandgap light has been measured as a function of applied bias, tunnel distance and excitation light power. The results are comp ared with the predictions of a model which includes the bias dependence of the tunnel barrier height and the bias-induced decrease of surface recombination velocity. It is found that i) the tunnel photocurrent from the conduction band dominates that from surface states. ii) At large tunnel distance the exponential bias dependence of the current is explained by that of the tunnel barrier height, while at small distance the change of surface recombination velocity is dominant.
161 - S. Cahangirov , S. Ciraci , 2013
A single graphene layer placed between two parallel Ni(111) surfaces screens the strong attractive force and results in a significant reduction of adhesion and sliding friction. When two graphene layers are inserted, each graphene is attached to one of the metal surfaces with a significant binding and reduces the adhesion further. In the sliding motion of these surfaces the transition from stick-slip to continuous sliding is attained, whereby non-equilibrium phonon generation through sudden processes is suppressed. The adhesion and corrugation strength continues to decrease upon insertion of the third graphene layer and eventually saturates at a constant value with increasing number of graphene layers. In the absence of Ni surfaces, the corrugation strength of multilayered graphene is relatively higher and practically independent of the number of layers. Present first-principles calculations reveal the superlubricant feature of graphene layers placed between pseudomorphic Ni(111) surfaces, which is achieved through the coupling of Ni-3d and graphene-$pi$ orbitals. The effect of graphene layers inserted between a pair of parallel Cu(111) and Al(111) surfaces are also discussed. The treatment of sliding friction under the constant loading force, by taking into account the deformations corresponding to any relative positions of sliding slabs, is the unique feature of our study.
The present manuscript summarizes the modern view on the problem of the graphene-metal interaction. Presently, the close-packed surfaces of d metals are used as templates for the preparation of highly-ordered graphene layers. Different classification s can be introduced for these systems: graphene on lattice-matched and graphene on lattice-mismatched surfaces where the interaction with the metallic substrate can be either strong or weak. Here these classifications, with the focus on the specific features in the electronic structure in all cases, are considered on the basis of large amounts of experimental and theoretical data, summarized and discussed. The perspectives of the graphene-metal interface in fundamental and applied physics and chemistry are pointed out.
The phase of a quantum state may not return to its original value after the systems parameters cycle around a closed path; instead, the wavefunction may acquire a measurable phase difference called the Berry phase. Berry phases typically have been ac cessed through interference experiments. Here, we demonstrate an unusual Berry-phase-induced spectroscopic feature: a sudden and large increase in the energy of angular-momentum states in circular graphene p-n junction resonators when a small critical magnetic field is reached. This behavior results from turning on a $pi$-Berry phase associated with the topological properties of Dirac fermions in graphene. The Berry phase can be switched on and off with small magnetic field changes on the order of 10 mT, potentially enabling a variety of optoelectronic graphene device applications.
Graphene oxide (GO) flakes have been deposited to bridge the gap between two epitaxial graphene electrodes to produce all-graphene devices. Electrical measurements indicate the presence of Schottky barriers (SB) at the graphene/graphene oxide junctio ns, as a consequence of the band-gap in GO. The barrier height is found to be about 0.7 eV, and is reduced after annealing at 180 $^circ$C, implying that the gap can be tuned by changing the degree of oxidation. A lower limit of the GO mobility was found to be 850 cm$^2$/Vs, rivaling silicon. {it In situ} local oxidation of patterned epitaxial graphene has been achieved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا