ﻻ يوجد ملخص باللغة العربية
We study the quenched disordered magnetic system, which is obtained from the 2D SO(3) quantum Heisenberg model, on a square lattice, with nearest neighbors interaction, by taking a Gaussian random distribution of couplings centered in an antiferromagnetic coupling, $bar J>0$ and with a width $Delta J$. Using coherent spin states we can integrate over the random variables and map the system onto a field theory, which is a generalization of the SO(3) nonlinear sigma model with different flavors corresponding to the replicas, coupling parameter proportional to $bar J$ and having a quartic spin interaction proportional to the disorder ($Delta J$). After deriving the CP$^1$ version of the system, we perform a calculation of the free energy density in the limit of zero replicas, which fully includes the quantum fluctuations of the CP$^1$ fields $z_i$. We, thereby obtain the phase diagram of the system in terms of ($T, bar J, Delta J$). This presents an ordered antiferromagnetic (AF) phase, a paramagnetic (PM) phase and a spin-glass (SG) phase. A critical curve separating the PM and SG phases ends at a quantum critical point located between the AF and SG phases, at T=0. The Edwards-Anderson order parameter, as well as the magnetic susceptibilities are explicitly obtained in each of the three phases as a function of the three control parameters. The magnetic susceptibilities show a Curie-type behavior at high temperatures and exhibit a clear cusp, characteristic of the SG transition, at the transition line. The thermodynamic stability of the phases is investigated by a careful analysis of the Hessian matrix of the free energy. We show that all principal minors of the Hessian are positive in the limit of zero replicas, implying in particular that the SG phase is stable.
We present a mean-field solution for a quantum, short-range interacting, disordered, SO(3) Heisenberg spin model, in which the Gaussian distribution of couplings is centered in an AF coupling $bar J>0$, and which, for weak disorder, can be treated as
Topological qauntum field theory(TQFT) is a very powerful theoretical tool to study topological phases and phase transitions. In $2+1$D, it is well known that the Chern-Simons theory captures all the universal topological data of topological phases,
Quantum topological excitations (skyrmions) are analyzed from the point of view of their duality to spin excitations in the different phases of a disordered two-dimensional, short-range interacting, SO(3) quantum magnetic system of Heisenberg type. T
We investigate the recently introduced geometric quench protocol for fractional quantum Hall (FQH) states within the framework of exactly solvable quantum Hall matrix models. In the geometric quench protocol a FQH state is subjected to a sudden chang
Trial wavefunctions like the Moore-Read and Read-Rezayi states which minimize short range multibody interactions are candidate states for describing the fractional quantum Hall effects at filling factors $ u = 1/2$ and $ u = 2/5$ in the second Landau