ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum field theory solution for a short-range interacting SO(3) quantum spin-glass

211   0   0.0 ( 0 )
 نشر من قبل Eduardo C. Marino
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the quenched disordered magnetic system, which is obtained from the 2D SO(3) quantum Heisenberg model, on a square lattice, with nearest neighbors interaction, by taking a Gaussian random distribution of couplings centered in an antiferromagnetic coupling, $bar J>0$ and with a width $Delta J$. Using coherent spin states we can integrate over the random variables and map the system onto a field theory, which is a generalization of the SO(3) nonlinear sigma model with different flavors corresponding to the replicas, coupling parameter proportional to $bar J$ and having a quartic spin interaction proportional to the disorder ($Delta J$). After deriving the CP$^1$ version of the system, we perform a calculation of the free energy density in the limit of zero replicas, which fully includes the quantum fluctuations of the CP$^1$ fields $z_i$. We, thereby obtain the phase diagram of the system in terms of ($T, bar J, Delta J$). This presents an ordered antiferromagnetic (AF) phase, a paramagnetic (PM) phase and a spin-glass (SG) phase. A critical curve separating the PM and SG phases ends at a quantum critical point located between the AF and SG phases, at T=0. The Edwards-Anderson order parameter, as well as the magnetic susceptibilities are explicitly obtained in each of the three phases as a function of the three control parameters. The magnetic susceptibilities show a Curie-type behavior at high temperatures and exhibit a clear cusp, characteristic of the SG transition, at the transition line. The thermodynamic stability of the phases is investigated by a careful analysis of the Hessian matrix of the free energy. We show that all principal minors of the Hessian are positive in the limit of zero replicas, implying in particular that the SG phase is stable.



قيم البحث

اقرأ أيضاً

We present a mean-field solution for a quantum, short-range interacting, disordered, SO(3) Heisenberg spin model, in which the Gaussian distribution of couplings is centered in an AF coupling $bar J>0$, and which, for weak disorder, can be treated as a perturbation of the pure AF Heisenberg system. The phase diagram contains, apart from a Neel phase at T=0, spin-glass and paramagnetic phases whose thermodynamic stability is demonstrated by an analysis of the Hessian matrix of the free-energy. The magnetic susceptibilities exhibit the typical cusp of a spin-glass transition.
Topological qauntum field theory(TQFT) is a very powerful theoretical tool to study topological phases and phase transitions. In $2+1$D, it is well known that the Chern-Simons theory captures all the universal topological data of topological phases, e.g., quasi-particle braiding statistics, chiral central charge and even provides us a deep insight for the nature of topological phase transitions. Recently, topological phases of quantum matter are also intensively studied in $3+1$D and it has been shown that loop like excitation obeys the so-called three-loop-braiding statistics. In this paper, we will try to establish a TQFT framework to understand the quantum statistics of particle and loop like excitation in $3+1$D. We will focus on Abelian topological phases for simplicity, however, the general framework developed here is not limited to Abelian topological phases.
Quantum topological excitations (skyrmions) are analyzed from the point of view of their duality to spin excitations in the different phases of a disordered two-dimensional, short-range interacting, SO(3) quantum magnetic system of Heisenberg type. T he phase diagram displays all the phases, which are allowed by the duality relation. We study the large distance behavior of the two-point correlation function of quantum skyrmions in each of these phases and, out of this, extract information about the energy spectrum and non-triviality of these excitations. The skyrmion correlators present a power-law decay in the spin-glass(SG)-phase, indicating that these quantum topological excitations are gapless but nontrivial in this phase. The SG phase is dual to the AF phase, in the sense that topological and spin excitations are respectively gapless in each of them. The Berezinskii-Kosterlitz-Thouless mechanism guarantees the survival of the SG phase at $T eq 0$, whereas the AF phase is washed out to T=0 by the quantum fluctuations. Our results suggest a new, more symmetric way of characterizing a SG-phase: one for which both the order and disorder parameters vanish, namely $<sigma > = 0 $, $<mu > =0 $, where $sigma$ is the spin and $mu$ is the topological excitation operators.
We investigate the recently introduced geometric quench protocol for fractional quantum Hall (FQH) states within the framework of exactly solvable quantum Hall matrix models. In the geometric quench protocol a FQH state is subjected to a sudden chang e in the ambient geometry, which introduces anisotropy into the system. We formulate this quench in the matrix models and then we solve exactly for the post-quench dynamics of the system and the quantum fidelity (Loschmidt echo) of the post-quench state. Next, we explain how to define a spin-2 collective variable $hat{g}_{ab}(t)$ in the matrix models, and we show that for a weak quench (small anisotropy) the dynamics of $hat{g}_{ab}(t)$ agrees with the dynamics of the intrinsic metric governed by the recently discussed bimetric theory of FQH states. We also find a modification of the bimetric theory such that the predictions of the modified bimetric theory agree with those of the matrix model for arbitrarily strong quenches. Finally, we introduce a class of higher-spin collective variables for the matrix model, which are related to generators of the $W_{infty}$ algebra, and we show that the geometric quench induces nontrivial dynamics for these variables.
Trial wavefunctions like the Moore-Read and Read-Rezayi states which minimize short range multibody interactions are candidate states for describing the fractional quantum Hall effects at filling factors $ u = 1/2$ and $ u = 2/5$ in the second Landau level. These trial wavefunctions are unique zero energy states of three body and four body interaction Hamiltonians respectively but are not close to the ground states of the Coulomb interaction. Previous studies using extensive parameter scans have found optimal two body interactions that produce states close to these. Here we focus on short ranged four body interaction and study two mean field approximations that reduce the four body interactions to two body interactions by replacing composite operators with their incompressible ground state expectation values. We present the results for pseudopotentials of these approximate interactions. Comparison of finite system spectra of the four body and the approximate interactions at filling fraction $ u=3/5$ show that these approximations produce good effective descriptions of the low energy structure of the four body ineraction Hamiltonian. The approach also independently reproduces the optimal two body interaction inferred from parameter scans. We also show that for $n=3$, but not for $n=4$, the mean field approximations of the $n$-body interaction is equivalent to particle hole symmetrization of the interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا