ﻻ يوجد ملخص باللغة العربية
Quantum topological excitations (skyrmions) are analyzed from the point of view of their duality to spin excitations in the different phases of a disordered two-dimensional, short-range interacting, SO(3) quantum magnetic system of Heisenberg type. The phase diagram displays all the phases, which are allowed by the duality relation. We study the large distance behavior of the two-point correlation function of quantum skyrmions in each of these phases and, out of this, extract information about the energy spectrum and non-triviality of these excitations. The skyrmion correlators present a power-law decay in the spin-glass(SG)-phase, indicating that these quantum topological excitations are gapless but nontrivial in this phase. The SG phase is dual to the AF phase, in the sense that topological and spin excitations are respectively gapless in each of them. The Berezinskii-Kosterlitz-Thouless mechanism guarantees the survival of the SG phase at $T eq 0$, whereas the AF phase is washed out to T=0 by the quantum fluctuations. Our results suggest a new, more symmetric way of characterizing a SG-phase: one for which both the order and disorder parameters vanish, namely $<sigma > = 0 $, $<mu > =0 $, where $sigma$ is the spin and $mu$ is the topological excitation operators.
We present a mean-field solution for a quantum, short-range interacting, disordered, SO(3) Heisenberg spin model, in which the Gaussian distribution of couplings is centered in an AF coupling $bar J>0$, and which, for weak disorder, can be treated as
We study the quenched disordered magnetic system, which is obtained from the 2D SO(3) quantum Heisenberg model, on a square lattice, with nearest neighbors interaction, by taking a Gaussian random distribution of couplings centered in an antiferromag
We propose an expanded spin-glass model, called the quantum Ghatak-Sherrington model, which considers spin-1 quantum spin operators in a crystal field and in a transverse field. The analytic solutions and phase diagrams of this model are obtained by
We study AKLT models on locally tree-like lattices of fixed connectivity and find that they exhibit a variety of ground states depending upon the spin, coordination and global (graph) topology. We find a) quantum paramagnetic or valence bond solid gr
Spin glasses and many-body localization (MBL) are prime examples of ergodicity breaking, yet their physical origin is quite different: the former phase arises due to rugged classical energy landscape, while the latter is a quantum-interference effect