ترغب بنشر مسار تعليمي؟ اضغط هنا

Stable Mean Field Solution of a Short-Range Interacting SO(3) Quantum Heisenberg Spin-Glass

138   0   0.0 ( 0 )
 نشر من قبل Eduardo C. Marino
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a mean-field solution for a quantum, short-range interacting, disordered, SO(3) Heisenberg spin model, in which the Gaussian distribution of couplings is centered in an AF coupling $bar J>0$, and which, for weak disorder, can be treated as a perturbation of the pure AF Heisenberg system. The phase diagram contains, apart from a Neel phase at T=0, spin-glass and paramagnetic phases whose thermodynamic stability is demonstrated by an analysis of the Hessian matrix of the free-energy. The magnetic susceptibilities exhibit the typical cusp of a spin-glass transition.



قيم البحث

اقرأ أيضاً

We study the quenched disordered magnetic system, which is obtained from the 2D SO(3) quantum Heisenberg model, on a square lattice, with nearest neighbors interaction, by taking a Gaussian random distribution of couplings centered in an antiferromag netic coupling, $bar J>0$ and with a width $Delta J$. Using coherent spin states we can integrate over the random variables and map the system onto a field theory, which is a generalization of the SO(3) nonlinear sigma model with different flavors corresponding to the replicas, coupling parameter proportional to $bar J$ and having a quartic spin interaction proportional to the disorder ($Delta J$). After deriving the CP$^1$ version of the system, we perform a calculation of the free energy density in the limit of zero replicas, which fully includes the quantum fluctuations of the CP$^1$ fields $z_i$. We, thereby obtain the phase diagram of the system in terms of ($T, bar J, Delta J$). This presents an ordered antiferromagnetic (AF) phase, a paramagnetic (PM) phase and a spin-glass (SG) phase. A critical curve separating the PM and SG phases ends at a quantum critical point located between the AF and SG phases, at T=0. The Edwards-Anderson order parameter, as well as the magnetic susceptibilities are explicitly obtained in each of the three phases as a function of the three control parameters. The magnetic susceptibilities show a Curie-type behavior at high temperatures and exhibit a clear cusp, characteristic of the SG transition, at the transition line. The thermodynamic stability of the phases is investigated by a careful analysis of the Hessian matrix of the free energy. We show that all principal minors of the Hessian are positive in the limit of zero replicas, implying in particular that the SG phase is stable.
Quantum topological excitations (skyrmions) are analyzed from the point of view of their duality to spin excitations in the different phases of a disordered two-dimensional, short-range interacting, SO(3) quantum magnetic system of Heisenberg type. T he phase diagram displays all the phases, which are allowed by the duality relation. We study the large distance behavior of the two-point correlation function of quantum skyrmions in each of these phases and, out of this, extract information about the energy spectrum and non-triviality of these excitations. The skyrmion correlators present a power-law decay in the spin-glass(SG)-phase, indicating that these quantum topological excitations are gapless but nontrivial in this phase. The SG phase is dual to the AF phase, in the sense that topological and spin excitations are respectively gapless in each of them. The Berezinskii-Kosterlitz-Thouless mechanism guarantees the survival of the SG phase at $T eq 0$, whereas the AF phase is washed out to T=0 by the quantum fluctuations. Our results suggest a new, more symmetric way of characterizing a SG-phase: one for which both the order and disorder parameters vanish, namely $<sigma > = 0 $, $<mu > =0 $, where $sigma$ is the spin and $mu$ is the topological excitation operators.
We use Monte Carlo simulations to study the one-dimensional long-range diluted Heisenberg spin glass with interactions that fall as a power, sigma, of the distance. Varying the power is argued to be equivalent to varying the space dimension of a shor t-range model. We are therefore able to study both the mean-field and non-mean-field regimes. For one value of sigma, in the non-mean-field regime, we find evidence that the chiral glass transition temperature may be somewhat higher than the spin glass transition temperature. For the other values of sigma we see no evidence for this.
We present a simple strategy in order to show the existence and uniqueness of the infinite volume limit of thermodynamic quantities, for a large class of mean field disordered models, as for example the Sherrington-Kirkpatrick model, and the Derrida p-spin model. The main argument is based on a smooth interpolation between a large system, made of N spin sites, and two similar but independent subsystems, made of N_1 and N_2 sites, respectively, with N_1+N_2=N. The quenched average of the free energy turns out to be subadditive with respect to the size of the system. This gives immediately convergence of the free energy per site, in the infinite volume limit. Moreover, a simple argument, based on concentration of measure, gives the almost sure convergence, with respect to the external noise. Similar results hold also for the ground state energy per site.
We study the phase transition of the $pm J$ Heisenberg model in three dimensions. Using a dynamical simulation method that removes a drift of the system, the existence of the spin-glass (SG) phase at low temperatures is suggested. The transition temp erature is estimated to be $T_{rm SG} sim 0.18J$ from both equilibrium and off-equilibrium Monte-Carlo simulations. Our result contradicts the chirality mechanism of the phase transition reported recently by Kawamura which claims that it is not the spins but the chiralities of the spins that are ordered in Heisenberg SG systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا