ﻻ يوجد ملخص باللغة العربية
We investigate the recently introduced geometric quench protocol for fractional quantum Hall (FQH) states within the framework of exactly solvable quantum Hall matrix models. In the geometric quench protocol a FQH state is subjected to a sudden change in the ambient geometry, which introduces anisotropy into the system. We formulate this quench in the matrix models and then we solve exactly for the post-quench dynamics of the system and the quantum fidelity (Loschmidt echo) of the post-quench state. Next, we explain how to define a spin-2 collective variable $hat{g}_{ab}(t)$ in the matrix models, and we show that for a weak quench (small anisotropy) the dynamics of $hat{g}_{ab}(t)$ agrees with the dynamics of the intrinsic metric governed by the recently discussed bimetric theory of FQH states. We also find a modification of the bimetric theory such that the predictions of the modified bimetric theory agree with those of the matrix model for arbitrarily strong quenches. Finally, we introduce a class of higher-spin collective variables for the matrix model, which are related to generators of the $W_{infty}$ algebra, and we show that the geometric quench induces nontrivial dynamics for these variables.
Quantum Hall matrix models are simple, solvable quantum mechanical systems which capture the physics of certain fractional quantum Hall states. Recently, it was shown that the Hall viscosity can be extracted from the matrix model for Laughlin states.
A conceptual difficulty in formulating the density functional theory of the fractional quantum Hall effect is that while in the standard approach the Kohn-Sham orbitals are either fully occupied or unoccupied, the physics of the fractional quantum Ha
We study transport properties of a charge qubit coupling two chiral Luttinger liquids, realized by two antidots placed between the edges of an integer $ u=1$ or fractional $ u=1/3$ quantum Hall bar. We show that in the limit of a large capacitive cou
A simple one-dimensional model is proposed, in which N spinless repulsively interacting fermions occupy M>N degenerate states. It is argued that the energy spectrum and the wavefunctions of this system strongly resemble the spectrum and wavefunctions
We report the observation of the fractional quantum Hall effect in the lowest Landau level of a two-dimensional electron system (2DES), residing in the diluted magnetic semiconductor Cd(1-x)Mn(x)Te. The presence of magnetic impurities results in a gi