ﻻ يوجد ملخص باللغة العربية
Topological qauntum field theory(TQFT) is a very powerful theoretical tool to study topological phases and phase transitions. In $2+1$D, it is well known that the Chern-Simons theory captures all the universal topological data of topological phases, e.g., quasi-particle braiding statistics, chiral central charge and even provides us a deep insight for the nature of topological phase transitions. Recently, topological phases of quantum matter are also intensively studied in $3+1$D and it has been shown that loop like excitation obeys the so-called three-loop-braiding statistics. In this paper, we will try to establish a TQFT framework to understand the quantum statistics of particle and loop like excitation in $3+1$D. We will focus on Abelian topological phases for simplicity, however, the general framework developed here is not limited to Abelian topological phases.
Fractional statistics is one of the most intriguing features of topological phases in 2D. In particular, the so-called non-Abelian statistics plays a crucial role towards realizing universal topological quantum computation. Recently, the study of top
We study Abelian braiding statistics of loop excitations in three-dimensional (3D) gauge theories with fermionic particles and the closely related problem of classifying 3D fermionic symmetry-protected topological (FSPT) phases with unitary symmetrie
Random matrix models provide a phenomenological description of a vast variety of physical phenomena. Prominent examples include the eigenvalue statistics of quantum (chaotic) systems, which are conveniently characterized using the spectral form facto
Matrix Product States (MPSs) provide a powerful framework to study and classify gapped quantum phases --symmetry-protected topological (SPT) phases in particular--defined in one dimensional lattices. On the other hand, it is natural to expect that ga
The same bulk two-dimensional topological phase can have multiple distinct, fully-chiral edge phases. We show that this can occur in the integer quantum Hall states at $ u=8$ and 12, with experimentally-testable consequences. We show that this can oc