ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical mass of a star cluster in M83: a test of fibre-fed multi-object spectroscopy

37   0   0.0 ( 0 )
 نشر من قبل Dr Paul A. Crowther
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) Aims: We obtained VLT/FLAMES+UVES high-resolution, fibre-fed spectroscopy (FFS) of five young massive clusters in M83 (NGC 5236). This forms the basis of a pilot study testing the feasibility of using FFS to measure the velocity dispersions of several clusters simultaneously, in order to determine their dynamical masses; Methods: We adopted two methods for determining the velocity dispersion of the star clusters: cross-correlating the cluster spectrum with the template spectra and minimising a chi^2 value between the cluster spectrum and the broadened template spectra. Cluster 805 in M83 was chosen as a control to test the reliability of the method, through a comparison with the results obtained from a standard echelle VLT/UVES spectrum obtained by Larsen & Richtler; Results: We find no dependence of the velocity dispersions measured for a cluster on the choice of red giant versus red supergiant templates, nor on the method adopted. We measure a velocity dispersion of sigma_los = 10.2+/-1.1 km/s for cluster 805 from our FFS. Our FLAMES+UVES velocity dispersion measurement gives M_vir = (6.6+/-1.7)e5 M_sun, consistent with previous results. This is a factor of ~3 greater than the clusters photometric mass, indicating a lack of virial equilibrium. However, based on its effective star formation efficiency, the cluster is likely to virialise, and may survive for a Hubble time, in the absence of external disruptive forces; Conclusions: We find that reliable velocity dispersions can be determined from FFS. The advantages of observing several clusters simultaneously outweighs the difficulty of accurate galaxy background subtraction, providing that the targets are chosen to provide sufficient S/N ratios, and are much brighter than the galaxy background.

قيم البحث

اقرأ أيضاً

348 - Aida Wofford , Rupali Chandar , 2010
We analyze archival HST/STIS/FUV-MAMA imaging and spectroscopy of 13 compact star clusters within the circumnuclear starburst region of M83, the closest such example. We compare the observed spectra with semi-empirical models, which are based on an e mpirical library of Galactic O and B stars observed with IUE, and with theoretical models, which are based on a new theoretical UV library of hot massive stars computed with WM-Basic. The models were generated with Starburst99 for metallicities of Z=0.020 and Z=0.040, and for stellar IMFs with upper mass limits of 10, 30, 50, and 100 M_sol. We estimate the ages and masses of the clusters from the best fit model spectra, and find that the ages derived from the semi-empirical and theoretical models agree within a factor of 1.2 on average. A comparison of the spectroscopic age estimates with values derived from HST/WFC3/UVIS multi-band photometry shows a similar level of agreement for all but one cluster. The clusters have a range of ages from about 3 to 20 Myr, and do not appear to have an age gradient along M83s starburst. Clusters with strong P-Cygni profiles have masses of a few times 10^4 M_sol, seem to have formed stars more massive than 30 M_sol, and are consistent with a Kroupa IMF from 0.1-100 M_sol. Field regions in the starburst lack P-Cygni profiles and are dominated by B stars.
100 - W. Boschin , M. Girardi 2018
We present the study of the dynamical status of the galaxy cluster CL1821+643, a rare and intriguing cool-core cluster hosting a giant radio halo. We base our analysis on new spectroscopic data for 129 galaxies acquired at the Italian Telescopio Nazi onale Galileo. We also use spectroscopic data available from the literature and photometric data from the Sloan Digital Sky Survey. We select 120 cluster member galaxies and compute the cluster redshift <z> ~ 0.296 and the global line-of-sight velocity dispersion $sigma_{rm V}$ ~ 1100 km/s. The results of our analysis are consistent with CL1821+643 being a massive dynamically relaxed cluster dominated by a big and luminous elliptical at the centre of the cluster potential well. None of the tests employed to study the cluster galaxies kinematics in the 1D (velocity information), 2D (spatial information), and 3D (combined velocity and spatial information) domains is able to detect significant substructures. While this picture is in agreement with previous results based on X-ray data and on the existence of the central cool core, we do not find any evidence of a merging process responsible for the radio halo discovered in this cluster. Thus, this radio halo remains an open problem that raises doubts about our understanding of diffuse radio sources in clusters.
The dynamical mass of a star cluster can be derived from the virial theorem, using the measured half-mass radius and line-of-sight velocity dispersion of the cluster. However, this dynamical mass may be a significant overestimation of the cluster mas s if the contribution of the binary orbital motion is not taken into account. In these proceedings we describe the mass overestimation as a function of cluster properties and binary population properties, and briefly touch the issue of selection effects. We find that for clusters with a measured velocity dispersion of sigma > 10 km/s the presence of binaries does not affect the dynamical mass significantly. For clusters with sigma < 1 km/s (i.e., low-density clusters), the contribution of binaries to sigma is significant, and may result in a major dynamical mass overestimation. The presence of binaries may introduce a downward shift of Delta log(L/Mdyn) = 0.05-0.4 in the log(L/Mdyn) vs. age diagram.
We report on the limitations of sky subtraction accuracy for long duration fibre-optic multi-object spectroscopy of faint astronomical sources during long duration exposures. We show that while standard sky subtraction techniques yield accuracies con sistent with the Poisson noise limit for exposures of 1 hour duration, there are large scale systematic defects that inhibit the sensitivity gains expected on the summation of longer duration exposures. For the AAOmega system at the Anglo-Australian Telescope we identify a limiting systematic sky subtraction accuracy which is reached after integration times of 4-10 hours. We show that these systematic defects can be avoided through the use of the fibre nod-and-shuffle observing mode, but with potential cost in observing efficiency. Finally we demonstrate that these disadvantages can be overcome through the application of a Principle Components Analysis sky subtraction routine. Such an approach minimise systematic residuals across long duration exposures allowing deep integrations. We apply the PCA approach to over 200 hours of on-sky observations and conclude that for the AAOmega system the residual error in long duration observations falls at a rate proportional to t^-0.32 in contrast to the t^-0.5 rate expected from theoretical considerations. With this modest rate of decline, the PCA approach represents a more efficient mode of observation than the nod-and-shuffle technique for observations in the sky limited regime with durations of 10-100 hours (even before accounting for the additional signal-to-noise and targeting efficiency losses often associated with the N+S technique).[abridged]
We present the results of a H- and K-band multi-object and long-slit spectroscopic survey of substellar mass candidates in the outer regions of the Orion Nebula Cluster. The spectra were obtained using MOIRCS on the 8.2-m Subaru telescope and ISLE on the 1.88-m telescope of Okayama Astronomical Observatory. Eight out of twelve spectra show strong water absorptions and we confirm that their effective temperatures are < 3000 K (spectral type > M6) from a chi-square fit to synthetic spectra. We plot our sources on an HR diagram overlaid with theoretical isochrones of low-mass objects and identify three new young brown dwarf candidates. One of the three new candidates is a cool object near the brown dwarf and planetary mass boundary. Based on our observations and those of previous studies, we determine the stellar (0.08 < M/Msun < 1) to substellar (0.03 < M/Msun < 0.08) mass number ratio in the outer regions of the Orion nebular cluster to be 3.5 +/- 0.8. In combination with the number ratio reported for the central region (3.3+0.8/-0.7), this result suggests the number ratio does not simply change with the distance from the center of the Orion nebular cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا