ﻻ يوجد ملخص باللغة العربية
The dynamical mass of a star cluster can be derived from the virial theorem, using the measured half-mass radius and line-of-sight velocity dispersion of the cluster. However, this dynamical mass may be a significant overestimation of the cluster mass if the contribution of the binary orbital motion is not taken into account. In these proceedings we describe the mass overestimation as a function of cluster properties and binary population properties, and briefly touch the issue of selection effects. We find that for clusters with a measured velocity dispersion of sigma > 10 km/s the presence of binaries does not affect the dynamical mass significantly. For clusters with sigma < 1 km/s (i.e., low-density clusters), the contribution of binaries to sigma is significant, and may result in a major dynamical mass overestimation. The presence of binaries may introduce a downward shift of Delta log(L/Mdyn) = 0.05-0.4 in the log(L/Mdyn) vs. age diagram.
Wave dark matter ($psi$DM) predicts a compact soliton core and a granular halo in every galaxy. This work presents the first simulation study of an elliptical galaxy by including both stars and $psi$DM, focusing on the systematic changes of the centr
The quenching rate is known to depend on galaxy stellar mass and environment, however, possible dependences on the hosting halo properties, such as mass, richness, and dynamical status, are still debated. The determination of these dependences is ham
The total mass of a distant star cluster is often derived from the virial theorem, using line-of-sight velocity dispersion measurements and half-light radii, under the implicit assumption that all stars are single (although it is known that most star
Learning rate, batch size and momentum are three important hyperparameters in the SGD algorithm. It is known from the work of Jastrzebski et al. arXiv:1711.04623 that large batch size training of neural networks yields models which do not generalize
Accurate chemical abundance measurements of X-ray emitting atmospheres pervading massive galaxies, galaxy groups, and clusters provide essential information on the star formation and chemical enrichment histories of these large scale structures. Alth