ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-object spectroscopy of CL1821+643: a dynamically relaxed cluster with a giant radio halo?

101   0   0.0 ( 0 )
 نشر من قبل Walter Boschin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the study of the dynamical status of the galaxy cluster CL1821+643, a rare and intriguing cool-core cluster hosting a giant radio halo. We base our analysis on new spectroscopic data for 129 galaxies acquired at the Italian Telescopio Nazionale Galileo. We also use spectroscopic data available from the literature and photometric data from the Sloan Digital Sky Survey. We select 120 cluster member galaxies and compute the cluster redshift <z> ~ 0.296 and the global line-of-sight velocity dispersion $sigma_{rm V}$ ~ 1100 km/s. The results of our analysis are consistent with CL1821+643 being a massive dynamically relaxed cluster dominated by a big and luminous elliptical at the centre of the cluster potential well. None of the tests employed to study the cluster galaxies kinematics in the 1D (velocity information), 2D (spatial information), and 3D (combined velocity and spatial information) domains is able to detect significant substructures. While this picture is in agreement with previous results based on X-ray data and on the existence of the central cool core, we do not find any evidence of a merging process responsible for the radio halo discovered in this cluster. Thus, this radio halo remains an open problem that raises doubts about our understanding of diffuse radio sources in clusters.



قيم البحث

اقرأ أيضاً

Massive galaxy clusters with cool-cores typically host diffuse radio sources called mini-haloes, whereas, those with non-cool-cores host radio haloes. We attempt to understand the unusual nature of the cool-core galaxy cluster CL1821+643 that hosts a Mpc-scale radio halo using new radio observations and morphological analysis of its intra-cluster medium. We present the Giant Metrewave Radio Telescope (GMRT) 610 MHz image of the radio halo. The spectral index, $alpha$ defined as $Spropto u^{-alpha}$, of the radio halo is $1.0pm0.1$ over the frequency range of 323 - 610 - 1665 MHz. Archival {it Chandra} X-ray data were used to make surface brightness and temperature maps. The morphological parameters Gini, $M_{20}$ and concentration ($C$) were calculated on X-ray surface brightness maps by including and excluding the central quasar (H1821+643) in the cluster. We find that the cluster CL1821+643, excluding the quasar, is a non-relaxed cluster as seen in the morphological parameter planes. It occupies the same region as other merging radio halo clusters in the temperature- morphology parameter plane. We conclude that this cluster has experienced a non-core-disruptive merger.
We present the detection of a giant radio halo (GRH) in the Sunyaev-Zeldovich (SZ)-selected merging galaxy cluster ACT-CL J0256.5+0006 ($z = 0.363$), observed with the Giant Metrewave Radio Telescope at 325 MHz and 610 MHz. We find this cluster to ho st a faint ($S_{610} = 5.6 pm 1.4$ mJy) radio halo with an angular extent of 2.6 arcmin, corresponding to 0.8 Mpc at the cluster redshift, qualifying it as a GRH. J0256 is one of the lowest-mass systems, $M_{rm 500,SZ} = (5.0 pm 1.2) times 10^{14} M_odot$, found to host a GRH. We measure the GRH at lower significance at 325 MHz ($S_{325} = 10.3 pm 5.3$ mJy), obtaining a spectral index measurement of $alpha^{610}_{325} = 1.0^{+0.7}_{-0.9}$. This result is consistent with the mean spectral index of the population of typical radio halos, $alpha = 1.2 pm 0.2$. Adopting the latter value, we determine a 1.4 GHz radio power of $P_{1.4text{GHz}} = (1.0 pm 0.3) times 10^{24}$ W Hz$^{-1}$, placing this cluster within the scatter of known scaling relations. Various lines of evidence, including the ICM morphology, suggest that ACT-CL J0256.5+0006 is composed of two subclusters. We determine a merger mass ratio of 7:4, and a line-of-sight velocity difference of $v_perp = 1880 pm 280$ km s$^{-1}$. We construct a simple merger model to infer relevant time-scales in the merger. From its location on the $P_{rm 1.4GHz}{-}L_{rm X}$ scaling relation, we infer that we observe ACT-CL J0256.5+0006 approximately 500 Myr before first core crossing.
The Ophiuchus galaxy cluster exhibits a curious concave gas density discontinuity at the edge of its cool core. It was discovered in the Chandra X-ray image by Werner and collaborators, who considered a possibility of it being a boundary of an AGN-in flated bubble located outside the core, but discounted this possibility because it required much too powerful an AGN outburst. Using low-frequency (72-240 MHz) radio data from MWA GLEAM and GMRT, we found that the X-ray structure is, in fact, a giant cavity in the X-ray gas filled with diffuse radio emission with an extraordinarily steep radio spectrum. It thus appears to be a very aged fossil of the most powerful AGN outburst seen in any galaxy cluster ($pVsim 5times 10^{61}$ erg for this cavity). There is no apparent diametrically opposite counterpart either in X-ray or in the radio. It may have aged out of the observable radio band because of the cluster asymmetry. At present, the central AGN exhibits only a weak radio source, so it should have been much more powerful in the past to have produced such a bubble. The AGN is currently starved of accreting cool gas because the gas density peak is displaced by core sloshing. The sloshing itself could have been set off by this extraordinary explosion if it had occurred in an asymmetric gas core. This dinosaur may be an early example of a new class of sources to be uncovered by low-frequency surveys of galaxy clusters.
In this Letter, we report the discovery of a radio halo in the high-redshift galaxy cluster PSZ2 G099.86+58.45 ($z=0.616$) with the LOw Frequency ARray (LOFAR) at 120-168 MHz. This is one of the most distant radio halos discovered so far. The diffuse emission extends over $sim$ 1 Mpc and has a morphology similar to that of the X-ray emission as revealed by XMM-Newton data. The halo is very faint at higher frequencies and is barely detected by follow-up 1-2 GHz Karl G.~Jansky Very Large Array (JVLA) observations, which enable us to constrain the radio spectral index to be $alphaleq 1.5-1.6$, i.e.; with properties between canonical and ultra-steep spectrum radio halos. Radio halos are currently explained as synchrotron radiation from relativistic electrons that are re-accelerated in the intra-cluster medium (ICM) by turbulence driven by energetic mergers. We show that in such a framework radio halos are expected to be relatively common at $sim150$ MHz ($sim30-60%$) in clusters with mass and redshift similar to PSZ2 G099.86+58.45; however, at least 2/3 of these radio halos should have steep spectrum and thus be very faint above $sim 1$ GHz frequencies. Furthermore, since the luminosity of radio halos at high redshift depends strongly on the magnetic field strength in the hosting clusters, future LOFAR observations will also provide vital information on the origin and amplification of magnetic fields in galaxy clusters.
We present the discovery of copious molecular gas in the halo of cid346, a z=2.2 quasar studied as part of the SINFONI survey for Unveiling the Physics and Effect of Radiative feedback (SUPER). New Atacama Compact Array (ACA) CO(3-2) observations det ect a much higher flux (by a factor of $14pm5$) than measured on kpc-scales ($rlesssim8$ kpc) using previous snapshot Atacama Large Millimeter/submillimeter Array (ALMA) data. Such additional CO(3-2) emission traces a structure that extends out to $rsim200$ kpc in projected size, as inferred through direct imaging and confirmed by an analysis of the uv visibilities. This is the most extended molecular circumgalactic medium (CGM) reservoir that has ever been mapped. It shows a complex kinematics, with an overall broad line profile (FWHM = 1000 km/s) that is skewed towards redshifted velocities up to at least $vsim1000$ km/s. Using the optically thin assumption, we estimate a strict lower limit for the total molecular CGM mass observed by ACA of, $M_{mol}^{CGM}>10^{10}~M_{odot}$. There is however room for up to $M^{CGM}_{mol}sim 1.7times 10^{12}$ $M_{odot}$, once optically thick CO emission with $alpha_{rm CO}=3.6~M_{odot}~(K~km~s^{-1}~pc^2)^{-1}$ and $L^{prime}_{CO(3-2)}/L^{prime}_{CO(1-0)}=0.5$ are assumed. Since cid346 hosts AGN-driven ionized outflows and since there is no evidence of merging companions or an overdensity, we suggest that outflows may have played a crucial rule in seeding metal-enriched, dense gas on halo scales. However, the origin of such an extended molecular CGM remains unclear.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا