ﻻ يوجد ملخص باللغة العربية
We present the results of a H- and K-band multi-object and long-slit spectroscopic survey of substellar mass candidates in the outer regions of the Orion Nebula Cluster. The spectra were obtained using MOIRCS on the 8.2-m Subaru telescope and ISLE on the 1.88-m telescope of Okayama Astronomical Observatory. Eight out of twelve spectra show strong water absorptions and we confirm that their effective temperatures are < 3000 K (spectral type > M6) from a chi-square fit to synthetic spectra. We plot our sources on an HR diagram overlaid with theoretical isochrones of low-mass objects and identify three new young brown dwarf candidates. One of the three new candidates is a cool object near the brown dwarf and planetary mass boundary. Based on our observations and those of previous studies, we determine the stellar (0.08 < M/Msun < 1) to substellar (0.03 < M/Msun < 0.08) mass number ratio in the outer regions of the Orion nebular cluster to be 3.5 +/- 0.8. In combination with the number ratio reported for the central region (3.3+0.8/-0.7), this result suggests the number ratio does not simply change with the distance from the center of the Orion nebular cluster.
(ABRIDGED) We have analysed the near-infrared photometric data from the Fourth Data Release (DR4) of the UKIRT Infrared Deep Sky Suvey (UKIDSS) Galactic Clusters Survey (GCS) to derive the cluster luminosity and mass functions, evaluate the extent of
We report the discovery of an esdL3 subdwarf, ULAS J020858.62+020657.0, and a usdL4.5 subdwarf, ULAS J230711.01+014447.1. They were identified as L subdwarfs by optical spectra obtained with the Gran Telescopio Canarias, and followed up by optical-to
We have obtained multi-fibre intermediate-resolution optical spectroscopy of 94 photometric and proper motion selected low-mass star and brown dwarf candidates in Upper Sco with AAT/AAOmega. We have estimated the spectral types and measured the equiv
We report the results of near infrared spectroscopy of 11 luminosity selected candidate planetary mass objects (PMOs) in the Trapezium Cluster with Gemini South/GNIRS and Gemini North/NIRI. 6 have spectral types >=M9, in agreement with expectations f
Context. Most observational studies so far point towards brown dwarfs sharing a similar formation mechanism as the one accepted for low mass stars. However, larger databases and more systematic studies are needed before strong conclusions can be reac