ترغب بنشر مسار تعليمي؟ اضغط هنا

Sharp optical phonon softening close to optimal doping in La$_{2-x}$Ba$_x$CuO$_{4+delta}$

148   0   0.0 ( 0 )
 نشر من قبل Matteo D'Astuto
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a direct observation of a sharp Kohn-like anomaly in the doubly degenerate copper-oxygen bond-stretching phonon mode occurring at $mathbf{q}mathrm{=(0.3, 0,0)}$ in La$_{2-x}$Ba$_x$CuO$_{4+delta}$ with $mathrm{x=0.14pm0.01}$, thanks to the high $mathbf{Q}$ resolution of inelastic x-ray scattering. This anomaly is clearly seen when the inelastic signal is analysed using a single mode but is also consistent with a two mode hypothesis possibly due to a splitting of the degenerate modes due to symmetry breaking stripes. Our observation shows that the effect persists at the stripe propagation vector in a superconducting system close to optimal doping.


قيم البحث

اقرأ أيضاً

The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts to understand high temperature superconductivity. We explore the evolution of the magnetic correlations along the nodal direction of the Brillouin zone i n La2-xSrxCuO4, spanning the doping phase diagram from the anti-ferromagnetic Mott insulator at x = 0 to the metallic phase at x = 0.26. Magnetic excitations along this direction are found to be systematically softened and broadened with doping, at a higher rate than the excitations along the anti-nodal direction. This phenomenology is discussed in terms of the nature of the magnetism in the doped cuprates. Survival of the high energy magnetic excitations, even in the overdoped regime, indicates that these excitations are marginal to pairing, while the influence of the low energy excitations remains ambiguous.
We have studied incommensurate spin ordering in single crystal underdoped La_{2-x}Ba_{x}CuO_{4} with x~0.08, 0.05 and 0.025 using neutron scattering techniques. Static incommensurate magnetic order is observed in the La_{2-x}Ba_{x}CuO_{4} (x=0.05 and 0.025) compounds with ordering wavevectors which are rotated by 45 degree about the commensurate (0.5,0.5,0) position, with respect to that in the superconducting x=0.08 material. These spin modulations are one dimensional in the x=0.05 and 0.025 samples, with ordering wavevectors lying along the orthorhombic b* direction. Such a rotation in the orientation of the static spin ordering as a function of increasing Ba doping, from diagonal to collinear, is roughly coincident with the transition from an insulating to a superconducting ground state and is similar to that observed in the related La_{2-x}Sr_{x}CuO_{4} system. This phenomenon is therefore a generic property of underdoped La-214 cuprates.
237 - Zhiwei Zhang , R. Sutarto , F. He 2017
A nematic order in stripe-ordered cuprates was recently identified with (001) reflection at resonant energies associated with the in-plane states. However, whether this resonant reflection is ubiquitous among all 214 cuprates is still unknown. Here w e report a Resonant soft X-ray Scattering (RXS) measurement on two La$_{2-x}$Sr$_x$CuO$_{4+y}$ crystals. Charge order was found in La$_2$CuO$_{4+y}$ with a total hole concentration near 0.125/Cu but no measurable (001) peak at any resonance, while in a La$_{1.94}$Sr$_{0.06}$CuO$_{4+y}$ sample near 0.16/Cu a (001) peak resonant was identified to be consistent with the presence of LTT tilting. The lack of such a (001) peak in a compound with stripe-like charge order raises questions about nematicity and the origin of the scattering feature.
210 - D. Fu , D. Nicoletti , M. Fechner 2021
Interlayer transport in high-$T_C$ cuprates is mediated by superconducting tunneling across the CuO$_2$ planes. For this reason, the terahertz frequency optical response is dominated by one or more Josephson plasma resonances and becomes highly nonli near at fields for which the tunneling supercurrents approach their critical value, $I_C$. These large terahertz nonlinearities are in fact a hallmark of superconducting transport. Surprisingly, however, they have been documented in La$_{2-x}$Ba$_x$CuO$_4$ also above $T_C$ for doping values near $x=1/8$, and interpreted as an indication of superfluidity in the stripe phase. Here, Electric Field Induced Second Harmonic (EFISH) is used to study the dynamics of time-dependent interlayer voltages when La$_{2-x}$Ba$_x$CuO$_4$ is driven with large-amplitude terahertz pulses, in search of other characteristic signatures of Josephson tunnelling in the normal state. We show that this method is sensitive to the voltage anomalies associated with 2$pi$ Josephson phase slips, which near $x=1/8$ are observed both below and above $T_C$. These results document a new regime of nonlinear transport that shares features of sliding charge-density-waves and superconducting phase dynamics.
Charge order is universal among high-T$_c$ cuprates but its relevance to superconductivity is not established. It is widely believed that, while static order competes with superconductivity, dynamic order may be favorable and even contribute to Coope r pairing. We use time-resolved resonant soft x-ray scattering to study the collective dynamics of the charge order in the prototypical cuprate, La$_{2-x}$Ba$_x$CuO$_4$. We find that, at energy scales $0.4$ meV $ lesssim omega lesssim 2$ meV, the excitations are overdamped and propagate via Brownian-like diffusion. At energy scales below 0.4 meV the charge order exhibits dynamic critical scaling, displaying universal behavior arising from propagation of topological defects. Our study implies that charge order is dynamic, so may participate tangibly in superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا