ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast time-resolved x-ray scattering reveals diffusive charge order dynamics in La$_{2-x}$Ba$_x$CuO$_4$

100   0   0.0 ( 0 )
 نشر من قبل Peter Abbamonte
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Charge order is universal among high-T$_c$ cuprates but its relevance to superconductivity is not established. It is widely believed that, while static order competes with superconductivity, dynamic order may be favorable and even contribute to Cooper pairing. We use time-resolved resonant soft x-ray scattering to study the collective dynamics of the charge order in the prototypical cuprate, La$_{2-x}$Ba$_x$CuO$_4$. We find that, at energy scales $0.4$ meV $ lesssim omega lesssim 2$ meV, the excitations are overdamped and propagate via Brownian-like diffusion. At energy scales below 0.4 meV the charge order exhibits dynamic critical scaling, displaying universal behavior arising from propagation of topological defects. Our study implies that charge order is dynamic, so may participate tangibly in superconductivity.



قيم البحث

اقرأ أيضاً

We use femtosecond resonant soft x-ray scattering to measure the ultrafast optical melting of charge-order correlations in La$_{1.875}$Ba$_{0.125}$CuO$_4$. By analyzing both the energy-resolved and energy-integrated order parameter dynamics, we find evidence of a short-lived nonequilibrium state, whose features are compatible with a sliding charge density wave coherently set in motion by the pump. This transient state exhibits shifts in both the quasielastic line energy and its wave vector, as expected from a classical Doppler effect. The wave vector change is indeed found to directly follow the pump propagation direction. These results demonstrate the existence of sliding charge order behavior in an unconventional charge density wave system and underscore the power of ultrafast optical excitation as a tool to coherently manipulate electronic condensates.
210 - D. Fu , D. Nicoletti , M. Fechner 2021
Interlayer transport in high-$T_C$ cuprates is mediated by superconducting tunneling across the CuO$_2$ planes. For this reason, the terahertz frequency optical response is dominated by one or more Josephson plasma resonances and becomes highly nonli near at fields for which the tunneling supercurrents approach their critical value, $I_C$. These large terahertz nonlinearities are in fact a hallmark of superconducting transport. Surprisingly, however, they have been documented in La$_{2-x}$Ba$_x$CuO$_4$ also above $T_C$ for doping values near $x=1/8$, and interpreted as an indication of superfluidity in the stripe phase. Here, Electric Field Induced Second Harmonic (EFISH) is used to study the dynamics of time-dependent interlayer voltages when La$_{2-x}$Ba$_x$CuO$_4$ is driven with large-amplitude terahertz pulses, in search of other characteristic signatures of Josephson tunnelling in the normal state. We show that this method is sensitive to the voltage anomalies associated with 2$pi$ Josephson phase slips, which near $x=1/8$ are observed both below and above $T_C$. These results document a new regime of nonlinear transport that shares features of sliding charge-density-waves and superconducting phase dynamics.
170 - Young-June Kim , G. D. Gu , T. Gog 2007
We report a comprehensive x-ray scattering study of charge density wave (stripe) ordering in $rm La_{2-x}Ba_xCuO_4 (x approx 1/8)$, for which the superconducting $T_c$ is greatly suppressed. Strong superlattice reflections corresponding to static ord ering of charge stripes were observed in this sample. The structural modulation at the lowest temperature was deduced based on the intensity of over 70 unique superlattice positions surveyed. We found that the charge order in this sample is described with one-dimensional charge density waves, which have incommensurate wave-vectors (0.23, 0, 0.5) and (0, 0.23, 0.5) respectively on neighboring $rm CuO_2$ planes. The structural modulation due to the charge density wave order is simply sinusoidal, and no higher harmonics were observed. Just below the structural transition temperature, short-range charge density wave correlation appears, which develops into a large scale charge ordering around 40 K, close to the spin density wave ordering temperature. However, this charge ordering fails to grow into a true long range order, and its correlation length saturates at $sim 230AA$, and slightly decreases below about 15 K, which may be due to the onset of two-dimensional superconductivity.
148 - Y. Drees , Z. W. Li , A. Ricci 2015
The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magn etic excitations within are believed to be connected to the pairing mechanism which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.
218 - Y. I. Joe , Y. Fang , S. Lee 2019
Resonant soft x-ray scattering (RSXS) is a leading probe of valence band order in materials best known for detecting charge density wave order in the copper-oxide superconductors. One of the biggest limitations on the RSXS technique is the presence o f a severe fluorescence background which, like the RSXS cross section itself, is enhanced under resonant conditions. This background prevents the study of weak signals such as diffuse scattering from glassy or fluctuating order that is spread widely over momentum space. Recent advances in superconducting transition edge sensor (TES) detectors have led to major improvements in energy resolution and detection efficiency in the soft x-ray range. Here, we perform a RSXS study of stripe-ordered La$_{2-x}$Ba$_x$CuO$_4$ at the Cu $L_{3/2}$ edge (932.2 eV) using a TES detector with 1.5 eV resolution, to evaluate its utility for mitigating the fluorescence background problem. We find that, for suitable degree of detuning from the resonance, the TES rejects the fluorescence background, leading to a 5 to 10 times improvement in the statistical quality of the data compared to an equivalent, energy-integrated measurement. We conclude that a TES presents a promising approach to reducing background in RSXS studies and may lead to new discoveries in materials exhibiting valence band order that is fluctuating or glassy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا