ترغب بنشر مسار تعليمي؟ اضغط هنا

Terahertz phase slips in striped La$_{2-x}$Ba$_x$CuO$_4$

211   0   0.0 ( 0 )
 نشر من قبل Daniele Nicoletti
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interlayer transport in high-$T_C$ cuprates is mediated by superconducting tunneling across the CuO$_2$ planes. For this reason, the terahertz frequency optical response is dominated by one or more Josephson plasma resonances and becomes highly nonlinear at fields for which the tunneling supercurrents approach their critical value, $I_C$. These large terahertz nonlinearities are in fact a hallmark of superconducting transport. Surprisingly, however, they have been documented in La$_{2-x}$Ba$_x$CuO$_4$ also above $T_C$ for doping values near $x=1/8$, and interpreted as an indication of superfluidity in the stripe phase. Here, Electric Field Induced Second Harmonic (EFISH) is used to study the dynamics of time-dependent interlayer voltages when La$_{2-x}$Ba$_x$CuO$_4$ is driven with large-amplitude terahertz pulses, in search of other characteristic signatures of Josephson tunnelling in the normal state. We show that this method is sensitive to the voltage anomalies associated with 2$pi$ Josephson phase slips, which near $x=1/8$ are observed both below and above $T_C$. These results document a new regime of nonlinear transport that shares features of sliding charge-density-waves and superconducting phase dynamics.



قيم البحث

اقرأ أيضاً

199 - D. Nicoletti , D. Fu , O. Mehio 2018
Optical excitation of stripe-ordered La$_{2-x}$Ba$_x$CuO$_4$ has been shown to transiently enhance superconducting tunneling between the CuO$_2$ planes. This effect was revealed by a blue-shift, or by the appearance of a Josephson Plasma Resonance in the terahertz-frequency optical properties. Here, we show that this photo-induced state can be strengthened by the application of high external magnetic fields oriented along the c-axis. For a 7-Tesla field, we observe up to a ten-fold enhancement in the transient interlayer phase correlation length, accompanied by a two-fold increase in the relaxation time of the photo-induced state. These observations are highly surprising, since static magnetic fields suppress interlayer Josephson tunneling and stabilize stripe order at equilibrium. We interpret our data as an indication that optically-enhanced interlayer coupling in La$_{2-x}$Ba$_x$CuO$_4$ does not originate from a simple optical melting of stripes, as previously hypothesized. Rather, we speculate that the photo-induced state may emerge from activated tunneling between optically-excited stripes in adjacent planes.
170 - Young-June Kim , G. D. Gu , T. Gog 2007
We report a comprehensive x-ray scattering study of charge density wave (stripe) ordering in $rm La_{2-x}Ba_xCuO_4 (x approx 1/8)$, for which the superconducting $T_c$ is greatly suppressed. Strong superlattice reflections corresponding to static ord ering of charge stripes were observed in this sample. The structural modulation at the lowest temperature was deduced based on the intensity of over 70 unique superlattice positions surveyed. We found that the charge order in this sample is described with one-dimensional charge density waves, which have incommensurate wave-vectors (0.23, 0, 0.5) and (0, 0.23, 0.5) respectively on neighboring $rm CuO_2$ planes. The structural modulation due to the charge density wave order is simply sinusoidal, and no higher harmonics were observed. Just below the structural transition temperature, short-range charge density wave correlation appears, which develops into a large scale charge ordering around 40 K, close to the spin density wave ordering temperature. However, this charge ordering fails to grow into a true long range order, and its correlation length saturates at $sim 230AA$, and slightly decreases below about 15 K, which may be due to the onset of two-dimensional superconductivity.
104 - X. Y. Tee , T. Ito , T. Ushiyama 2016
We use spatially-resolved transport techniques to investigate the superconducting properties of single crystals La$_{2-x}$Ba$_x$CuO$_4$. We find a new superconducting transition temperature $T_{cs}$ associated with the ab-plane surface region which i s considerably higher than the bulk $T_c$. The effect is pronounced in the region of charge carrier doping $x$ with strong spin-charge stripe correlations, reaching $T_{cs}=36$ K or 1.64$T_c$.
The high critical temperature superconductor Lanthanum Barium Copper Oxide (La2-xBaxCuO4 or LBCO) exhibits a strong anomaly in critical temperature at 1/8th doping, nematicity, and other interesting properties. We report here Scanning Superconducting Quantum Interference Device (SQUID) imaging of the magnetic fields and susceptibility in a number of thin film LBCO samples with doping in the vicinity of the 1/8th anomaly. Spatially resolved measurements of the critical temperatures of these samples do not show a pronounced depression at 1/8th doping. They do, however, exhibit strong, nearly linear modulations of the susceptibility (straie) of multiple samples with surprisingly long periods of 1-4 microns. Counterintuitively, vortices trap in positions of largest diamagnetic susceptibility in these striae. Given the rich interplay of different orders in this material system and its known sensitivity to epitaxial strain, we propose phase separation as a possible origin of these features and discuss scenarios in which that might arise.
We report on a thermoelectric investigation of the stripe and superconducting phases of the cuprate La$_{2-x}$Ba$_{x}$CuO$_{4}$ near the $x=1/8$ doping known to host stable stripes. We use the doping and magnetic field dependence of field-symmetric N ernst effect features to delineate the phenomenology of these phases. Our measurements are consistent with prior reports of time-reversal symmetry breaking signatures above the superconducting $T_{{rm c}}$, and crucially detect a sharp, robust, field-invariant peak at the stripe charge order temperature, $T_{{rm {scriptscriptstyle CO}}}$. Our observations suggest the onset of a nontrivial charge ordered phase at $T_{{rm {scriptscriptstyle CO}}}$, and the subsequent presence of spontaneously generated vortices over a broad temperature range before the emergence of bulk superconductivity in LBCO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا