ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase Transitions in the 1-d Long-Range Diluted Heisenberg Spin Glass

213   0   0.0 ( 0 )
 نشر من قبل A. Peter Young
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use Monte Carlo simulations to study the one-dimensional long-range diluted Heisenberg spin glass with interactions that fall as a power, sigma, of the distance. Varying the power is argued to be equivalent to varying the space dimension of a short-range model. We are therefore able to study both the mean-field and non-mean-field regimes. For one value of sigma, in the non-mean-field regime, we find evidence that the chiral glass transition temperature may be somewhat higher than the spin glass transition temperature. For the other values of sigma we see no evidence for this.



قيم البحث

اقرأ أيضاً

We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study larger sizes, 48x48x48, than have been attempted before at a spin glass phase transition. A finite-size scaling analysis indicates tha t the data is compatible with the most economical scenario: a common transition temperature for spins and chiralities.
We investigate the geometric properties of loops on two-dimensional lattice graphs, where edge weights are drawn from a distribution that allows for positive and negative weights. We are interested in the appearance of spanning loops of total negativ e weight. The resulting percolation problem is fundamentally different from conventional percolation, as we have seen in a previous study of this model for the undiluted case. Here, we investigate how the percolation transition is affected by additional dilution. We consider two types of dilution: either a certain fraction of edges exhibit zero weight, or a fraction of edges is even absent. We study these systems numerically using exact combinatorial optimization techniques based on suitable transformations of the graphs and applying matching algorithms. We perform a finite-size scaling analysis to obtain the phase diagram and determine the critical properties of the phase boundary. We find that the first type of dilution does not change the universality class compared to the undiluted case whereas the second type of dilution leads to a change of the universality class.
108 - Y. Tabata , K. Matsuda , S. Kanada 2010
A phase transition of a model compound of the long-range Ising spin glass (SG) Dy$_{x}$Y$_{1-x}$Ru$_{2}$Si$_{2}$, where spins interact via the RKKY interaction, has been investigated. The static and the dynamic scaling analyses reveal that the SG pha se transition in the model magnet belongs to the mean-field universality class. Moreover, the characteristic relaxation time in finite magnetic fields exhibits a critical divergent behavior as well as in zero field, indicating a stability of the SG phase in finite fields. The presence of the SG phase transition in field in the model magnet strongly syggests that the replica symmetry is broken in the long-range Ising SG.
All higher-spin s >= 1/2 Ising spin glasses are studied by renormalization-group theory in spatial dimension d=3. The s-sequence of global phase diagrams, the chaos Lyapunov exponent, and the spin-glass runaway exponent are calculated. It is found th at, in d=3, a finite-temperature spin-glass phase occurs for all spin values, including the continuum limit of s rightarrow infty. The phase diagrams, with increasing spin s, saturate to a limit value. The spin-glass phase, for all s, exhibits chaotic behavior under rescalings, with the calculated Lyapunov exponent of lambda = 1.93 and runaway exponent of y_R=0.24, showing simultaneous strong-chaos and strong-coupling behaviors. The ferromagnetic-spinglass-antiferromagnetic phase transitions occurring around p_t = 0.37 and 0.63 are unaffected by s, confirming the percolative nature of this phase transition.
We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power sigma of the distance. We show that there is a value of sigma of the long-range model for which the critical behavior is very similar to that of the short-range model in four dimensions. We also study a value of sigma for which we find the critical behavior to be compatible with that of the three dimensional model, though we have much less precision than in the four-dimensional case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا