ﻻ يوجد ملخص باللغة العربية
We study the phase transition of the $pm J$ Heisenberg model in three dimensions. Using a dynamical simulation method that removes a drift of the system, the existence of the spin-glass (SG) phase at low temperatures is suggested. The transition temperature is estimated to be $T_{rm SG} sim 0.18J$ from both equilibrium and off-equilibrium Monte-Carlo simulations. Our result contradicts the chirality mechanism of the phase transition reported recently by Kawamura which claims that it is not the spins but the chiralities of the spins that are ordered in Heisenberg SG systems.
We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study larger sizes, 48x48x48, than have been attempted before at a spin glass phase transition. A finite-size scaling analysis indicates tha
The statics-dynamics correspondence in spin glasses relate non-equilibrium results on large samples (the experimental realm) with equilibrium quantities computed on small systems (the typical arena for theoretical computations). Here we employ static
We introduce an efficient dynamical tree method that enables us, for the first time, to explicitly demonstrate thermo-remanent magnetization memory effect in a hierarchical energy landscape. Our simulation nicely reproduces the nontrivial waiting-tim
We perform numerical simulations, including parallel tempering, on the Potts glass model with binary random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy transition, estimating the location of the
We use Monte Carlo simulations to study the one-dimensional long-range diluted Heisenberg spin glass with interactions that fall as a power, sigma, of the distance. Varying the power is argued to be equivalent to varying the space dimension of a shor