ترغب بنشر مسار تعليمي؟ اضغط هنا

Planar spin-transfer device with a dynamic polarizer

103   0   0.0 ( 0 )
 نشر من قبل Yaroslaw Bazaliy
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In planar nano-magnetic devices magnetization direction is kept close to a given plane by the large easy-plane magnetic anisotropy, for example by the shape anisotropy in a thin film. In this case magnetization shows effectively in-plane dynamics with only one angle required for its description. Moreover, the motion can become overdamped even for small values of Gilbert damping. We derive the equations of effective in-plane dynamics in the presence of spin-transfer torques. The simplifications achieved in the overdamped regime allow to study systems with several dynamic magnetic pieces (``free layers). A transition from a spin-transfer device with a static polarizer to a device with two equivalent magnets is observed. When the size difference between the magnets is less than critical, the device does not exhibit switching, but goes directly into the ``windmill precession state.

قيم البحث

اقرأ أيضاً

Non-planar solar-cell devices have been promoted as a means to enhance current collection in absorber materials with charge-transport limitations. This work presents an analytical framework for assessing the ultimate performance of non-planar solar-c ells based on materials and geometry. Herein, the physics of the p-n junction is analyzed for low-injection conditions, when the junction can be considered spatially separable into quasi-neutral and space-charge regions. For the conventional planar solar cell architecture, previously established one-dimensional expressions governing charge carrier transport are recovered from the framework established herein. Space-charge region recombination statistics are compared for planar and non-planar geometries, showing variations in recombination current produced from the space-charge region. In addition, planar and non-planar solar cell performance are simulated, based on a semi-empirical expression for short-circuit current, detailing variations in charge carrier transport and efficiency as a function of geometry, thereby yielding insights into design criteria for solar cell architectures. For the conditions considered here, the expressions for generation rate and total current are shown to universally govern any solar cell geometry, while recombination within the space-charge region is shown to be directly dependent on the geometrical orientation of the p-n junction.
We describe a film of highly-aligned single-walled carbon nanotubes that acts as an excellent terahertz linear polarizer. There is virtually no attenuation (strong absorption) when the terahertz polarization is perpendicular (parallel) to the nanotub e axis. From the data we calculated the reduced linear dichrosim to be 3, corresponding to a nematic order parameter of 1, which demonstrates nearly perfect alignment as well as intrinsically anisotropic terahertz response of single-walled carbon nanotubes in the film.
Modulating the polarization of a beam of quantum particles is a powerful method to tailor the macroscopic properties of the ensuing energy flux as it directly influences the way in which its quantum constituents interact with other particles, waves o r continuum media. Practical polarizers, being well developed for electric and electromagnetic energy, have not been proposed to date for heat fluxes carried by phonons. Here we report on atomistic phonon transport calculations demonstrating that ferroelectric domain walls can operate as phonon polarizers when a heat flux pierces them. Our simulations for representative ferroelectric perovskite PbTiO$_3$ show that the structural inhomogeneity associated to the domain walls strongly suppresses transverse phonons, while longitudinally polarized modes can travel through multiple walls in series largely ignoring their presence.
107 - Z. Wei , A. Sharma , A. S. Nunez 2006
An electrical current can transfer spin angular momentum to a ferromagnet. This novel physical phenomenon, called spin transfer, offers unprecedented spatial and temporal control over the magnetic state of a ferromagnet and has tremendous potential i n a broad range of technologies, including magnetic memory and recording. Recently, it has been predicted that spin transfer is not limited to ferromagnets, but can also occur in antiferromagnetic materials and even be stronger under some conditions. In this paper we demonstrate transfer of spin angular momentum across an interface between ferromagnetic and antiferromagnetic metals. The spin transfer is mediated by an electrical current of high density (~10^12 A/m^2) and revealed by variation in the exchange bias at the ferromagnet/antiferromagnet interface. We find that, depending on the polarity of the electrical current flowing across the interface, the strength of the exchange bias can either increase or decrease. This finding is explained by the theoretical prediction that a spin polarized current generates a torque on magnetic moments in the antiferromagnet. Current-mediated variation of exchange bias can be used to control the magnetic state of spin-valve devices, e.g., in magnetic memory applications.
The current driven magnetisation dynamics of a helical spin-density wave is investigated. Expressions for calculating the spin-transfer torque of real systems from first principles density functional theory are presented. These expressions are used f or calculating the spin-transfer torque for the spin spirals of Er and fcc Fe at two different lattice volumes. It is shown that the calculated torque induces a rigid rotation of the order parameter with respect to the spin spiral axis. The torque is found to depend on the wave vector of the spin spiral and the spin-polarisation of the Fermi surface states. The resulting dynamics of the spin spiral is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا