ترغب بنشر مسار تعليمي؟ اضغط هنا

Carbon Nanotube Terahertz Polarizer

186   0   0.0 ( 0 )
 نشر من قبل Junichiro Kono
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a film of highly-aligned single-walled carbon nanotubes that acts as an excellent terahertz linear polarizer. There is virtually no attenuation (strong absorption) when the terahertz polarization is perpendicular (parallel) to the nanotube axis. From the data we calculated the reduced linear dichrosim to be 3, corresponding to a nematic order parameter of 1, which demonstrates nearly perfect alignment as well as intrinsically anisotropic terahertz response of single-walled carbon nanotubes in the film.



قيم البحث

اقرأ أيضاً

151 - A. Misra , C. Daraio 2008
We report on the nano-electron beam assisted fabrication of atomically sharp iron-based tips and on the creation of a nano-soldering iron for nano-interconnects using Fe-filled multiwalled carbon nanotubes (MWCNTs). High energy electron beam machinin g has been proven a powerful tool to modify desired nanostructures for technological applications and to form molecular junctions and interconnections between carbon nanotubes. Recent studies showed the high degree of complexity in the creation of direct interconnections between multiwalled and CNTs having dissimilar diameters. Our technique allows for carving a MWCNT into a nanosoldering iron that was demonstrated capable of joining two separated halves of a tube. This approach could easily be extended to the interconnection of two largely dissimilar CNTs, between a CNT and a nanowire or between two nanowires.
The thermal radiation from an isolated finite-length carbon nanotube (CNT) is theoretically investigated both in near- and far-field zones. The formation of the discrete spectrum in metallic CNTs in the terahertz range is demonstrated due to the refl ection of strongly slowed-down surface-plasmon modes from CNT ends. The effect does not appear in semiconductor CNTs. The concept of CNT as a thermal nanoantenna is proposed.
We report on single-wall carbon nanotube (SWCNT) specific $^{13}$C isotope enrichment. The high temperature annealing of isotope enriched fullerenes encapsulated in SWCNTs yields double-wall carbon nanotubes (DWCNTs) with a high isotope enrichment of the inner wall. The vibrational spectra evidences that no carbon exchange occurs between the two walls. The method facilitates the identification of the Raman signal of the outer and inner tubes. Nuclear magnetic resonance proves the significant contrast of the isotope enriched SWCNTs as compared to other carbon phases, and provides information on the electronic properties of the small diameter inner tubes of the DWCNTs.
In this paper the new concept of super-bridges, i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of 3.
Carbon nanotube Schottky diodes have been fabricated in an all-photolithographic process using dissimilar contact metals on high-frequency compatible substrates (quartz and sapphire). Diodes show near-ideal behavior, and rectify currents of up to 100 nA and at frequencies up to 18 GHz. The voltage and frequency dependence is used to estimate the junction capacitance of ~10-18 F and the intrinsic device cut-off frequency of ~400 GHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا