ﻻ يوجد ملخص باللغة العربية
Modulating the polarization of a beam of quantum particles is a powerful method to tailor the macroscopic properties of the ensuing energy flux as it directly influences the way in which its quantum constituents interact with other particles, waves or continuum media. Practical polarizers, being well developed for electric and electromagnetic energy, have not been proposed to date for heat fluxes carried by phonons. Here we report on atomistic phonon transport calculations demonstrating that ferroelectric domain walls can operate as phonon polarizers when a heat flux pierces them. Our simulations for representative ferroelectric perovskite PbTiO$_3$ show that the structural inhomogeneity associated to the domain walls strongly suppresses transverse phonons, while longitudinally polarized modes can travel through multiple walls in series largely ignoring their presence.
Using multiscaling analysis, we compare the characteristic roughening of ferroelectric domain walls in PZT thin films with numerical simulations of weakly pinned one-dimensional interfaces. Although at length scales up to a length scale greater or eq
Ferroelectric materials are spontaneous symmetry breaking systems characterized by ordered electric polarizations. Similar to its ferromagnetic counterpart, a ferroelectric domain wall can be regarded as a soft interface separating two different ferr
While an ideal antiparallel ferroelectric wall is considered a unit cell in width (~0.5nm), we show using phase field modeling that the threshold field for moving this wall dramatically drops by 2-3 orders of magnitude if the wall were diffuse by onl
Using Landau-Ginzburg-Devonshire theory we calculated numerically the static conductivity of both inclined and counter domain walls in the uniaxial ferroelectrics-semiconductors of n-type. We used the effective mass approximation for the electron and
Surprising asymmetry in the local electromechanical response across a single antiparallel ferroelectric domain wall is reported. Piezoelectric force microscopy is used to investigate both the in-plane and out-of- plane electromechanical signals aroun