ترغب بنشر مسار تعليمي؟ اضغط هنا

في هذه الورقة، نقدم النظم المقدمة من فريقنا من معهد تكنولوجيا المعلومات والاتصالات (HIGH-VD / HES-SO) إلى مهمة MT غير الخاضعة للرقابة والموارد منخفضة للغاية.ندرس أولا التحسينات التي جلبت إلى نظام أساسي من خلال تقنيات مثل الترجمة الخلفي والتهيئة من نم وذج الوالدين.نجد أن كلتا التقنيتين مفيدة وكافية للوصول إلى الأداء الذي يقارن مع أنظمة أكثر تطورا من مهمة 2020.بعد ذلك، نقدم تطبيق هذا النظام إلى مهمة 2021 للمزيد من الأغراض السربية العلوي تحت الإشراف (HSB) إلى الترجمة الألمانية، في كلا الاتجاهين.أخيرا، نقدم نظاما نظعا ل HSB-DE في كلا الاتجاهين، وللترجمة الألمانية غير الخاضعة للرقابة إلى أسفل ترجمة Sorbian (DSB)، والتي تستخدم التدريب المتعدد المهام مع مختلف جداول التدريب لتحسين الخط الأساسي.
تصف هذه الورقة نظام Noahnmt المقدم إلى المهمة المشتركة WMT 2021 الخاصة بترجمة آلية منخفضة للغاية للإشراف على الموارد.النظام هو نموذج محول قياسي مزود بتقنية نقلنا الحديثة.كما توظف التقنيات المستخدمة على نطاق واسع من المعروف أنها مفيدة للترجمة الآلية ا لعصبية، بما في ذلك الترجمة الترجمة الإلكترونية التكرارية، والصلفة المختارة، والوقت.يقدم التقديم النهائي أعلى بلو لثلاثة اتجاهات ترجمة.
نقدم نتائج المهام المشتركة WMT2021 في MT غير المنضدة والموارد منخفضة للغاية.في هذه المهمة، درس المجتمع ترجمة الموارد المنخفضة جدا بين اللغة الألمانية والصربية العليا، والترجمة غير المنخفضة بين الترجمة من اللغة الألمانية والسوربية والمنخفضة الموارد بي ن الروسية والجواد، وجميع لغات الأقليات مع المجتمعات اللغوية النشطة تعمل على الحفاظ على اللغات، والذين هم شركاء فيالتقييم.شكرا بذلك، تمكنا من الحصول على معظم البيانات الرقمية المتاحة لهذه اللغات وتقديمها للمشاركين في المهام.في المجموع، شارك ست فرق في المهمة المشتركة.تناقش الورقة الخلفية، وتعرض المهام والنتائج، ويناقش أفضل الممارسات للمستقبل.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا