ترغب بنشر مسار تعليمي؟ اضغط هنا

تم انتقاد التمثيل اللغوي المستمدة من النص وحده بسبب نقص الأساس، أي ربط الكلمات مع معانيها في العالم المادي.عرضت نماذج الرؤية واللغة (VL)، التي تم تدريبها بالاشتراك على نص بيانات النص والصورة أو الفيديو كرددا على مثل هذه الانتقادات.ومع ذلك، في حين أظه رت مؤشر الأفلام VL النجاح على مهام متعددة الوسائط مثل الإجابة على السؤال المرئي، فإنه لم يعرف بعد كيف المقارنة بين التمثيلات اللغوية الداخلية أنفسهم بنظرائهم النصي فقط.تقارن هذه الورقة التمثيلات الدلالية المستفادة عبر VL مقابل النص لا يمكن أن تحذر فقط عن نماذج VL الأخيرة باستخدام مجموعة من التحليلات (التجميع والتحقيق والأداء في مهمة الإجابة على سؤال للبلد) في وضع لغة فقط.نجد أن النماذج متعددة الوسائط تفشل في الظهور بشكل كبير من المتغيرات النصية فقط، مما يشير إلى أن العمل المستقبلي مطلوب إذا تم اتباع الاحتجاج متعدد الوسائط بمثابة متابعته كوسيلة لتحسين NLP بشكل عام.
من الصعب معالجة وسائل التواصل الاجتماعي لأدوات معالجة اللغة الطبيعية القائمة، بسبب الأخطاء الإملائية، والكلمات غير القياسية، والتقصاصات، والرسملة غير القياسية وعلامات الترقيم.إحدى الطرق للتحايل على هذه المشكلات هي تطبيع بيانات الإدخال قبل المعالجة.رك زت معظم الأعمال السابقة بلغة واحدة فقط، والتي هي في الغالب الإنجليزية.في هذه الورقة، نحن أول من يقترح نموذجا للتطبيع المتبادل، الذي نشارك فيه في مهمة WNUT 2021 المشتركة.تحقيقا لهذه الغاية، نستخدم Monoise كنقطة انطلاق، وإجراء تكييف بسيط للتطبيق عبر اللغات.ينفأ النموذج الخاص بنا المقترح على خط الأساس في الإجازة التي يوفرها المنظمون الذين نسخ المدخلات.علاوة على ذلك، نستكشف نموذجا مختلفا تماما يحول المهمة إلى مهمة وضع علامة تسلسل.أداء هذا النظام الثاني منخفض، لأنه لا يأخذ القيمة في الاعتبار في تنفيذنا.
يعد تعلم الفروق المحتمات الدقيقة بين العناصر المفردات تحديا رئيسيا في تعلم لغة جديدة.على سبيل المثال، يحتوي جدار الاسم "على مظاهر معجمية مختلفة باللغة الإسبانية - قلص" "يشير إلى جدار داخلي بينما يشير مورو" إلى جدار خارجي.ومع ذلك، قد لا يكون هذا التنو ع من التمييز المعجمي واضحا للمتعلمين غير الأصليين ما لم يتم تفسير التمييز بهذه الطريقة.في هذا العمل، نقدم طريقة لتحديد التفرقات المعجمية المحتلة تلقائيا، واستخراج القواعد في توضيح هذه الفروق بتنسيق قابل للقراءة بين الإنسان والآلات.نحن نؤكد جودة هذه القواعد المستخرجة في إعداد تعلم اللغة لغتين وإسبانيا واليونانيين، حيث نستخدم القواعد لتدريس الناطقين غير الأصلية عند ترجمة كلمة غامضة معينة في ترجماتها المختلفة المحتملة.
تم عرض الجمع بين نموذج لغة مسبق (PLM) مع أنماط نصية للمساعدة في كل من إعدادات الطلقة الصفرية وعدد. بالنسبة للأداء الصفر بالرصاص، فمن المنطقي تصميم أنماط تشبه النص الذي ينظر إليه عن كثب أثناء الاحتجاج بالإشراف على الذات لأن النموذج لم ير أي شيء آخر. ا لتدريب الخاضع للإشراف يسمح بمزيد من المرونة. إذا سمحنا بالرمز الرموز خارج المفردات PLM، فيمكن تكييف الأنماط بشكل أكثر مرونة لمصمم الخصوصيات PLM. الأنماط المتناقضة حيث يمكن أن يكون الرمز المميز أي ناقل مستمر من تلك التي يجب أن يتم فيها اختيار منفصل بين عناصر المفردات، ونحن نسمي أنماط طريقنا المستمرة (كونان). نقوم بتقييم كونان على معايير مدرجة للاستدلال المعجمي في السياق (LIIC) A.K.a. المستقلة المستقلة، وهي مهمة تفاهم لغة طبيعية صعبة مع بيانات تدريب صغيرة نسبيا. في مقارنة مباشرة مع الأنماط المنفصلة، ​​يؤدي كونان باستمرار إلى تحسين الأداء، وضع حالة من الفن الجديد. تجربتنا تعطي رؤى قيمة على نوع النمط الذي يعزز أداء PLM على LIC ورفع أسئلة مهمة فيما يتعلق بفهم PLMS باستخدام أنماط النص.
يتم تعريف Sememes على أنها الوحدات الذرية لوصف المعنى الدلالي للمفاهيم.نظرا لصعوبة التعليق يدويا في التسجيل يدويا واستنادا إلى التعليق بين الخبراء، فقد تم اقتراح مهمة تنبؤات النظرة المعجمية.ومع ذلك، فإن الأساليب السابقة تعتمد بشدة على Word أو Artters dings، وتجاهل المعلومات المحبوسة الدقيقة.في هذه الورقة، نقترح طريقة رواية ما قبل التدريب والتي تم تصميمها لتحسين دمج المعلومات الداخلية للشخصية الصينية.يتم استخدام تمثيل الأحرف الصيني المحسنة Glyph (دول مجلس التعاون الخليجي) لمساعدة تنبؤة النظر.نقوم بتجربة وتقييم النموذج لدينا على HOWNET، وهو قاعدة المعرفة الشمالية الشهيرة.تظهر النتائج التجريبية أن أسلوبنا تتفوق على نماذج المعلومات غير الخارجية الموجودة.
تم إظهار نماذج الإجابة على الأسئلة (QA) للحصول على فهم القراءة لاستغلال تحيزات محددات غير مقصودة مثل السؤال - التداخل المعجمي السياق. هذا يعيق نماذج ضمان الجودة من المعمم إلى العينات الممثلة تمثيلا مثل الأسئلة ذات التداخل المعجمي المنخفض. يمكن أن يكو ن جيل السؤال (QG)، وهي طريقة لتعزيز مجموعات بيانات QA، حل تدهور الأداء إذا كان QG يمكن أن Debias QA بشكل صحيح. ومع ذلك، نكتشف أن نماذج QG العصبية الأخيرة متحيزة نحو توليد الأسئلة ذات التداخل المعجمي العالي، والتي يمكن أن تضخيم تحيز DataSet. علاوة على ذلك، يكشف تحليلنا أن تكبير البيانات مع نماذج QG هذه تضعف بشكل متكرر الأداء على الأسئلة مع التداخل المعجمي المنخفض، مع تحسين ذلك على الأسئلة ذات التداخل المعجمي العالي. لمعالجة هذه المشكلة، نستخدم نهج مرادف يستند إلى استبدال أسئلة زيادة التداخل المعجمي المنخفض. نوضح أن نهج تكبير البيانات المقترح بسيط ولكنه فعال في التخفيف من مشكلة التدهور مع الأمثلة الاصطناعية 70K فقط.
تتمتع النموذج المستنى بالضمان بشعبية كبيرة في الأعمال الأخيرة من تجزئة التسلسل.ومع ذلك، فإن كل من هذه الطرق تعاني من عيوبها الخاصة، مثل التنبؤات غير الصالحة.في هذا العمل، نقدم نموذجا موحدا أساسيا، تحليل وحدة معجمية (LUA)، التي تتناول كل هذه الأمور.تج زئة تسلسل وحدة معجمية ينطوي على خطوتين.أولا، قمنا بتضمين كل فترة باستخدام التمثيلات من نموذج لغة المحدد.ثانيا، نحدد درجة لكل مرشح تجزئة وتطبيق البرمجة الديناميكية (DP) لاستخراج المرشح بحد أقصى درجة.لقد أجرينا تجارب مكثفة في 3 مهام، (على سبيل المثال، تصنيع النحوية)، عبر 7 مجموعات من مجموعات البيانات.أنشأت لوا عروضا جديدة من الفنادق الجديدة في 6 منها.لقد حققنا نتائج أفضل من خلال دمج ارتباطات التسمية.
أنظمة الترجمة الآلية عرضة لمواطيات المجال، خاصة في سيناريو منخفض الموارد.غالبا ما تكون ترجمات خارج النطاق ذات جودة رديئة وعرضة للهلوسة، بسبب تحيز التعرض والكشف بمثابة نموذج لغة.نعتمد نهجين لتخفيف هذه المشكلة: القائمة المختصرة المعجمية مقيدة بمحاذاة إ يماء IBM، وفرض الفرضية القائمة على التشابه.الأساليب هي رخيصة حسابية وتظهر النجاح على مجموعات اختبار الموارد المنخفضة من الموارد.ومع ذلك، فإن الطرق تفقد ميزة عند وجود بيانات كافية أو عدم تطابق مجال كبير جدا.يرجع ذلك إلى كل من نموذج IBM يفقد ميزته على المحاذاة العصبية المستفادة ضمنيا، وقضايا تجزئة الكلمات الفرعية للكلمات غير المرئية.
تعرف مهمة تحويل نص غير قياسي إلى نص قياسي وقابل للقراءة باسم التطبيع المعجمي. تتطلب جميع تطبيقات معالجة اللغة الطبيعية تقريبا (NLP) البيانات النصية في النموذج الطبيعي لإنشاء نماذج محددة ذات جودة عالية. وبالتالي، فقد ثبت التطبيع المعجمي لتحسين أداء ال عديد من مهام معالجة اللغة الطبيعية على وسائل التواصل الاجتماعي. تهدف هذه الدراسة إلى حل مشكلة التطبيع المعجمي من خلال صياغة مهمة التطبيع المعجمية مشكلة وضع علامة تسلسل. تقترح هذه الورقة نهج وضع علامة تسلسل لحل مشكلة التطبيع المعجمي في تركيبة مع تقنية محاذاة الكلمة. الهدف هو استخدام نموذج واحد لتطبيع النص باللغات المختلفة وهي الكرواتية والدنماركية والهولندية والإنجليزية والإندونيسية والإنجليزية والألمانية والإيطالية والصربية والسلوفينية والإسبانية والتركية والتركية والألمانية والألمانية. هذه مهمة مشتركة في عام 2021 ورشة العمل السابعة حول النص الناتج عن المستخدم الصاخب (W-NUT) "" من المتوقع أن يقوم المشاركون بإنشاء نظام / نموذج يقوم بتنفيذ التطبيع المعجمي، وهو ترجمة النصوص غير القانونية في تعادلهم الكنسي، الذين يشتملون على بيانات من أكثر من 12 لغة. يحقق النموذج المتعدد اللغوي المقترح نتيجة ERS الإجمالية من 43.75 بشأن التقييم الجوهري ونتيجة إجمالي درجة المرفقات (LAS) من 63.12 على التقييم الخارجي. علاوة على ذلك، تحقق الطريقة المقترحة أعلى نقاط معدل تخفيض الأخطاء (ERR) من 61.33 من بين المشاركين في المهمة المشتركة. تسلط هذه الدراسة الضوء على آثار استخدام بيانات تدريب إضافية للحصول على نتائج أفضل وكذلك استخدام نموذج لغة مدرب مسبقا تدرب على لغات متعددة بدلا من لغة واحدة فقط.
نقدم الدخول الفائز إلى مهمة مشتركة من التطبيع المعجمي متعدد اللغات (Multilexnorm) في W-Nut 2021 (Van Der Goot et al.، 2021A)، والتي تقيم أنظمة التطبيع المعجمي في 12 مجموعة بيانات وسائل التواصل الاجتماعي في 11 لغة.نقوم بتأسيس حلنا على نموذج لغة بايت م دروس مسبقا، BYT5 (Xue et al.، 2021A)، والتي ندرجها مسبقا على البيانات الاصطناعية ثم تناغم بشكل جيد على بيانات التطبيع الأصيل.يحقق نظامنا أفضل أداء بهامش واسع في التقييم الجوهري، وأيضا أفضل أداء في التقييم الخارجي من خلال تحليل التبعية.يتم إصدار شفرة المصدر في https://github.com/ufal/multilexnorm2021 والنماذج الدقيقة في https://huggingface.co/ufal.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا