تم إظهار نماذج الإجابة على الأسئلة (QA) للحصول على فهم القراءة لاستغلال تحيزات محددات غير مقصودة مثل السؤال - التداخل المعجمي السياق. هذا يعيق نماذج ضمان الجودة من المعمم إلى العينات الممثلة تمثيلا مثل الأسئلة ذات التداخل المعجمي المنخفض. يمكن أن يكون جيل السؤال (QG)، وهي طريقة لتعزيز مجموعات بيانات QA، حل تدهور الأداء إذا كان QG يمكن أن Debias QA بشكل صحيح. ومع ذلك، نكتشف أن نماذج QG العصبية الأخيرة متحيزة نحو توليد الأسئلة ذات التداخل المعجمي العالي، والتي يمكن أن تضخيم تحيز DataSet. علاوة على ذلك، يكشف تحليلنا أن تكبير البيانات مع نماذج QG هذه تضعف بشكل متكرر الأداء على الأسئلة مع التداخل المعجمي المنخفض، مع تحسين ذلك على الأسئلة ذات التداخل المعجمي العالي. لمعالجة هذه المشكلة، نستخدم نهج مرادف يستند إلى استبدال أسئلة زيادة التداخل المعجمي المنخفض. نوضح أن نهج تكبير البيانات المقترح بسيط ولكنه فعال في التخفيف من مشكلة التدهور مع الأمثلة الاصطناعية 70K فقط.
Question answering (QA) models for reading comprehension have been demonstrated to exploit unintended dataset biases such as question--context lexical overlap. This hinders QA models from generalizing to under-represented samples such as questions with low lexical overlap. Question generation (QG), a method for augmenting QA datasets, can be a solution for such performance degradation if QG can properly debias QA datasets. However, we discover that recent neural QG models are biased towards generating questions with high lexical overlap, which can amplify the dataset bias. Moreover, our analysis reveals that data augmentation with these QG models frequently impairs the performance on questions with low lexical overlap, while improving that on questions with high lexical overlap. To address this problem, we use a synonym replacement-based approach to augment questions with low lexical overlap. We demonstrate that the proposed data augmentation approach is simple yet effective to mitigate the degradation problem with only 70k synthetic examples.
المراجع المستخدمة
https://aclanthology.org/
الهدف الشامل من معالجة اللغة الطبيعية هو تمكين الآلات من التواصل بسلاسة مع البشر.ومع ذلك، يمكن أن تكون اللغة الطبيعية غامضة أو غير واضحة.في حالات عدم اليقين، يشارك البشر في عملية تفاعلية تعرف باسم الإصلاح: طرح الأسئلة والسعي للحصول على توضيح حتى يتم
ركزت أبحاث NLP باللغة العبرية إلى حد كبير على التورفولوجيا وبناء جملة، حيث تتوفر مجموعات البيانات المشروحة الغنية بروح التبعيات العالمية.ومع ذلك، تعد مجموعات البيانات الدلالية في العرض القصير، مما يعوق السلف الحاسم في تطوير تكنولوجيا NLP باللغة العبر
على الرغم من إظهار قيم واعدة للتطبيقات المصب، فإن توليد السؤال والإجابة معا يتم استكشافها. في هذه الورقة، نقدم مهمة جديدة تستهدف توليد زوج الإجابة على الأسئلة من الصور المرئية. لا يتطلب عدم توليد أزواج حول الإجابات المتنوعة فقط ولكن أيضا الحفاظ على ا
نماذج الإجابة على الأسئلة (QA) تستخدم أنظمة المسترد والقارئ للإجابة على الأسئلة.يمكن الاعتماد على البيانات التدريبية من قبل أنظمة ضمان الجودة أو تعكس عدم المساواة من خلال ردودهم.يتم تدريب العديد من نماذج QA، مثل تلك الخاصة ب DataSet Squad، على مجموعة
أظهرت الأعمال التجريدية الأخيرة أن نماذج اللغة (LM) تلتقط أنواعا مختلفة من المعرفة فيما يتعلق بالحقائق أو الحس السليم. ومع ذلك، نظرا لأن أي نموذج مثالي، إلا أنهم لا يزالون يفشلون في تقديم إجابات مناسبة في العديد من الحالات. في هذه الورقة، نطرح السؤال