نقدم الدخول الفائز إلى مهمة مشتركة من التطبيع المعجمي متعدد اللغات (Multilexnorm) في W-Nut 2021 (Van Der Goot et al.، 2021A)، والتي تقيم أنظمة التطبيع المعجمي في 12 مجموعة بيانات وسائل التواصل الاجتماعي في 11 لغة.نقوم بتأسيس حلنا على نموذج لغة بايت مدروس مسبقا، BYT5 (Xue et al.، 2021A)، والتي ندرجها مسبقا على البيانات الاصطناعية ثم تناغم بشكل جيد على بيانات التطبيع الأصيل.يحقق نظامنا أفضل أداء بهامش واسع في التقييم الجوهري، وأيضا أفضل أداء في التقييم الخارجي من خلال تحليل التبعية.يتم إصدار شفرة المصدر في https://github.com/ufal/multilexnorm2021 والنماذج الدقيقة في https://huggingface.co/ufal.
We present the winning entry to the Multilingual Lexical Normalization (MultiLexNorm) shared task at W-NUT 2021 (van der Goot et al., 2021a), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. We base our solution on a pre-trained byte-level language model, ByT5 (Xue et al., 2021a), which we further pre-train on synthetic data and then fine-tune on authentic normalization data. Our system achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. The source code is released at https://github.com/ufal/multilexnorm2021 and the fine-tuned models at https://huggingface.co/ufal.
المراجع المستخدمة
https://aclanthology.org/
التطبيع المعجمي هو مهمة تحويل الكلام في شكلها الموحد. هذه المهمة مفيدة لتحليل المصب، لأنها توفر طريقة للتنسيق (غالبا ما تكون عفوية) تباين لغوي. مثل هذا الاختلاف هو نموذجي للوسائط الاجتماعية التي تتم مشاركة المعلومات في العديد من الطرق، بما في ذلك الل
تعرف مهمة تحويل نص غير قياسي إلى نص قياسي وقابل للقراءة باسم التطبيع المعجمي. تتطلب جميع تطبيقات معالجة اللغة الطبيعية تقريبا (NLP) البيانات النصية في النموذج الطبيعي لإنشاء نماذج محددة ذات جودة عالية. وبالتالي، فقد ثبت التطبيع المعجمي لتحسين أداء ال
من الصعب معالجة وسائل التواصل الاجتماعي لأدوات معالجة اللغة الطبيعية القائمة، بسبب الأخطاء الإملائية، والكلمات غير القياسية، والتقصاصات، والرسملة غير القياسية وعلامات الترقيم.إحدى الطرق للتحايل على هذه المشكلات هي تطبيع بيانات الإدخال قبل المعالجة.رك
تصف هذه الورقة التقديمات HEL-LJU إلى المهمة المشتركة متعددة الأبعاد على التطبيع المعجمي متعدد اللغات.يعتمد نظامنا على خطوة مسبقة تصنيف صفقة Bert Token، حيث يتم توقع كل رمزي نوع التحول الضروري (لا شيء، أحرف كبيرة، صغيرة، كاستفغل، تعديل)، وخطوة SMT على
إن تقييم تعقيد كلمة مستهدفة في سياق حكومي هو الهدف من مهمة تنبؤ التعقيد المعجمية في Semeval-2021.تقدم هذه الورقة النظام الذي تم إنشاؤه لتقييم تعقيد كلمات واحدة معجمية، والجمع بين المتغيرات اللغوية والنفسية في مجموعة من التجارب التي تنطوي على غابة عشو