تتضمن ممارسة شائعة في بناء مجموعات بيانات NLP، خاصة استخدام التعليقات التوضيحية من قبل الجمهور، الحصول على أحكام معلقية متعددة على نفس حالات البيانات، والتي يتم تسويتها بعد ذلك لإنتاج حقائق أو درجة أرضية واحدة، من خلال التصويت الأغلبية، المتوسط، أو ا
لحكموبعدفي حين أن هذه النهج قد تكون مناسبة في مهام توضيحية معينة، تطل مثل هذه التجمعات على الطبيعة التي تم إنشاؤها اجتماعيا للتصورات الإنسانية التي تهدف الشروح عن المهام ذاتية نسبيا إلى الاستيلاء عليها.على وجه الخصوص، فإن الخلافات المنهجية بين المحن المعلقين بسبب خلفياتهم الاجتماعية والثقافية والتجارب العاشية غالبا ما يتم توعيتها من خلال هذه التجمعات.في هذه الورقة، نوضح تجريبيا أن تجميع الملصقات قد يعرض تحيزات تمثيلية من وجهات النظر الفردية والمجموعة.بناء على هذا النتيجة، نقترح مجموعة من توصيات لزيادة فائدة وشفافية مجموعات البيانات في حالات استخدام المصب.
تضع الكشف عن الشائعات على وسائل التواصل الاجتماعي نماذج لغة مدربة مسبقا (LMS)، مثل Bert، والميزات المساعدة، مثل التعليقات، قيد الاستخدام. ومع ذلك، من ناحية، فإن مجموعات بيانات الكشف عن الشائعات في الشركات الصينية مع تعليقات نادرة؛ من ناحية أخرى، فإن
التفاعل المكثف من الاهتمام على النماذج القائمة على المحولات مثل بيرت قد يعيق تحسين الأداء. لتخفيف هذه المشاكل، نبني مجموعة بيانات جديدة من المدونات الصغيرة الصينية تسمى Weibo20 من خلال جمع الوظائف والتعليقات المرتبطة بها من سينا ويبو واقترح فرقة جديدة تسمى Stanker (Bracking Network بناء على الانتباه ملثمين). تتبنى Stanker نماذج برت ملثمين من اهتمامات اثنين من المحبوسين على مستوى تشفير قاعدة. على عكس الخطابة الأصلية، يتخذ نموذج LGAM-Bert الجديد الخاص بنا تعليقات كملفات مساعدة مهمة ويعتد على الانتباه بين الوظائف والتعليقات على الطبقات المنخفضة. أظهرت التجارب على Weibo20 وثلاث مجموعات بيانات وسائل التواصل الاجتماعي الحالية أن الستائر تفوقت على جميع النماذج المقارنة، وخاصة ضرب الدولة القديمة في مجموعة بيانات Weibo.
اكتسبت الترجمة الآلية المتزامنة الجر مؤخرا، بفضل تحسينات الجودة المهمة ومختام تطبيقات البث.تحتاج أنظمة الترجمة المتزامنة إلى إيجاد مفاضلة بين جودة الترجمة ووقت الاستجابة، وبالتالي تم اقتراح تدابير الكمون المتعددة.ومع ذلك، يتم تقدير تقييمات الكمون للت
رجمة الفورية على مستوى الجملة، ولا تأخذ في الاعتبار الطبيعة المتسلسلة لسيناريو البث.في الواقع، هذه تدابير الكمون على مستوى الجملة ليست مناسبة تماما للترجمة المستمرة، مما أدى إلى وجود أرقام غير متماسكة مع سياسة الترجمة المتزامنة للنظام التي يتم تقييمها.يقترح هذا العمل تكيف مستوى دفق من تدابير الكمون الحالية بناء على نهج إعادة تجزئة مطبق على ترجمة الناتج، والتي يتم تقييمها بنجاح على شروط البث لمهمة الإشارة IWSLT.
تبسيط النص هو تقنية قيمة.ومع ذلك، يقتصر البحث الحالي على تبسيط الجملة.في هذه الورقة، نحدد والتحقيق في مهمة جديدة من تبسيط نص المستندات على مستوى المستند، والتي تهدف إلى تبسيط وثيقة تتكون من جمل متعددة.بناء على مقالب ويكيبيديا، نقوم أولا ببناء مجموعة
بيانات واسعة النطاق تسمى D-Wikipedia وأداء التحليل والتقييم البشري عليه لإظهار أن مجموعة البيانات موثوقة.بعد ذلك، نقترح مقياس تقييم تلقائي جديد يسمى D-SARI هو أكثر ملاءمة لمهمة تبسيط مستوى المستند.أخيرا، نقوم باختيار العديد من النماذج التمثيلية كطرازات أساسية لهذه المهمة وأداء التقييم التلقائي والتقييم البشري.نحن نحلل النتائج وأشرح أوجه القصور في النماذج الأساسية.
تعتمد العديد من مقاييس تقييم الترجمة الآلية الحديثة مثل Bertscore، Bleurt، Comet، Monotransquest أو xmovercore على نماذج لغة Black-Box.وبالتالي، من الصعب شرح سبب إرجاع هذه المقاييس درجات معينة.تعالج المهمة المشتركة Eval4NLP لهذا العام هذا التحدي من خ
لال البحث عن طرق يمكن استخراجها من الدرجات ذات الأهمية التي ترتبط بشكل جيد مع التعليقات التوضيحية خطأ على مستوى الكلمات البشرية.في هذه الورقة نظهر أن المقاييس غير المزدئة التي تستند إلى TokenMatching يمكن أن توفر جوهرية مثل هذه الدرجات.يفسر النظام المقدم على أوجه التشابه في تضمين الكلمات السياقية المستخدمة لحساب (x) BertScore كأهمية ذات أهمية على مستوى الكلمة.
كلمة embeddings تلتقط المعنى الدلالي للكلمات الفردية.كيفية سد المعرفة اللغوية على مستوى Word مع تمثيل لغة مستوى الجملة هو مشكلة مفتوحة.تفحص هذه الورقة ما إذا كان يمكن تحقيق تمثيلات مستوى الجملة من خلال بناء قاعدة بيانات جملة مخصصة تركز على جانب واحد
من معنى الجملة.إن الجوانب الدلالية الثلاثة المنفصلة الخاصة بنا هي ما إذا كانت الجملة: (1) تقوم (1) بإجراء علاقات سببية، (2) تشير إلى أن شيئين مرتبطين ببعضهما البعض، و (3) يعبر عن معلومات أو معرفة.توفر المصنفات الثلاثة معلومات معرفية حول محتوى الجملة.
في الآونة الأخيرة، أصبح مجتمع الترجمة الآلية أكثر اهتماما بالتقييم على مستوى المستندات خاصة في ضوء ردود الفعل على مطالبات التكافؤ البشري "، لأن دراسة الجودة على مستوى الوثيقة بدلا من مستوى الحكم يسمح بذلكتقييم السياق Suprasententents، توفير تقييم أكث
ر موثوقية.تقدم هذه الورقة كوربوس على مستوى المستند بشرط باللغة الإنجليزية مع مشكلات واضحة للسياق التي تنشأ عند ترجمة من الإنجليزية إلى البرتغالية البرازيلية، وهي القطع القطع والجنس والغميات المعجمية والعدد والمرجعية والمصطلحات، مع ستة مجالات مختلفة.يمكن استخدام Corpus كمجموعة اختبار تحدي للتقييم وكجور تدريب / اختبار لتدريب / اختبار ل MT وكذلك للتحليل اللغوي العميق لقضايا السياق.إلى حد ما من معرفتنا، هذه هي أول لجنة من نوعها.
تجزئة خطاب وقطع الخطاب على مستوى الجملة تلعب أدوارا مهمة لمختلف مهام NLP للنظر في التماسك النصي.على الرغم من الإنجازات الأخيرة في كلا المهام، لا يزال هناك مجال للتحسين بسبب ندرة البيانات المسمى.لحل المشكلة، نقترح مصنف إنتاج نموذجي في اللغة (LMGC) لاس
تخدام مزيد من المعلومات من الملصقات عن طريق معالجة الملصقات كمدخلات أثناء تعزيز تمثيلات التسمية من خلال تضمين أوصاف لكل ملصق.علاوة على ذلك، نظرا لأن هذا يتيح LMGC من إعداد تمثيلات الملصقات، غير المرئي في خطوة ما قبل التدريب، يمكننا استخدام نموذج لغة مدرب مسبقا في LMGC.تظهر النتائج التجريبية على DTSET RST-DT أن LMGC حققت النتيجة F1 من أصل 96.72 في تجزئة الخطاب.وقد حقق المزيد من درجات الولاية F1 عشرات من 84.69 مع حدود الذهب EDU و 81.18 مع حدود مجزأة تلقائيا، على التوالي، في تحليل خطاب على مستوى الجملة.
نقترح نظام رواية لاستخدام محول Levenshtein لأداء مهمة تقدير جودة مستوى Word.محول Levenshtein هو مناسب طبيعي لهذه المهمة: تم تدريبه على إجراء فك التشفير بطريقة تكرارية، يمكن لمحول Levenshtein أن يتعلم النشر بعد تحرير دون إشراف صريح.لزيادة تقليل عدم ال
تطابق بين مهمة الترجمة ومهمة QE على مستوى الكلمة، نقترح إجراء تعلم نقل من مرحلتين على كل من البيانات المعززة وبيانات ما بعد التحرير البشري.نقترح أيضا الاستدلال لبناء ملصقات مرجعية متوافقة مع Finetuning على مستوى الكلمات الفرعية والاستدلال.النتائج على مجموعة بيانات المهام المشتركة WMT 2020 تشاركت إلى أن طريقةنا المقترحة لها كفاءة بيانات فائقة تحت الإعداد المقيد للبيانات والأداء التنافسي تحت الإعداد غير المقيد.
شروط الارتفاع استخراج (أكلت) وتصنيف معنويات الجانب (ASC) هي مهمتان أساسيتان من المهام الفرعية الأساسية والغرامة في تحليل المعنويات على مستوى الجانب (ALSA). في التحليل النصي، تم استخراج المشترك استخراج كل من شروط الارتفاع وأقطاب المعنويات كثيرا بسبب ط
لبات أفضل من المهمة الفرعية الفردية. ومع ذلك، في السيناريو متعدد الوسائط، تقتصر الدراسات الحالية على التعامل مع كل مهمة فرعية بشكل مستقل، والتي تفشل في نموذج العلاقة الفطرية بين الأهدافين أعلاه وتتجاهل التطبيقات الأفضل. لذلك، في هذه الورقة، نحن أول من يؤدي ذلك بشكل مشترك أداء أكلت متعددة الوسائط (ماتي) ومتعدد الوسائط (MASC)، ونقترح نهج التعلم المشترك متعدد الوسائط مع اكتشاف العلاقات عبر الوسائط المساعد للمتوسطة تحليل المعنويات على مستوى الجانب (Malsa). على وجه التحديد، نقوم أولا بإنشاء وحدة اكتشاف علاقة نصية إضافية للكشف عنها للتحكم في الاستغلال المناسب للمعلومات المرئية. ثانيا، نعتمد إطار التسلسل الهرمي لسجل الاتصال متعدد الوسائط بين رفيقه ومتك اليومي، بالإضافة إلى توجيه بصري منفصل لكل وحدة فرعية. أخيرا، يمكننا الحصول على جميع أطريات المعنويات على مستوى جانب الجسبي تعتمد على الجوانب المحددة المستخرجة بشكل مشترك. تظهر تجارب واسعة فعالية نهجنا مقابل الأساليب النصية المشتركة والخط الأنابيب ونهج متعددة الوسائط.