ترغب بنشر مسار تعليمي؟ اضغط هنا

We theoretically investigate twisted structures where each layer is composed of a strongly correlated material. In particular, we study a twisted t-J model of cuprate multilayers within the slave-boson mean field theory. This treatment encompasses th e Mott physics at small doping and self consistently generates d-wave pairing. Furthermore, including the correct inter-layer tunneling form factor consistent with the symmetry of the Cu $d_{x^2-y^2}$ orbital proves to be crucial for the phase diagram. We find spontaneous time reversal (T) breaking around twist angle of $45^circ$, although only in a narrow window of twist angles. Moreover, the gap obtained is small and the Chern number vanishes, implying a non-topological superconductor. At smaller twist angles, driving an interlayer current however can lead to a gapped topological phase. The energy-phase relation of the interlayer Josephson junction displays notable double-Cooper-pair tunneling which dominates around $45^o$. The twist angle dependence of the Josephson critical current and the Shapiro steps are consistent with recent experiments. Utilizing the moire structure as a probe of correlation physics, in particular of the pair density wave state, is discussed.
In 5$d^2$ Mott insulators with strong spin-orbit coupling, the lowest pseudospin states form a non-Kramers doublet, which carries quadrupolar and octupolar moments. A family of double-perovskites where magnetic ions form a face-centered cubic (FCC) l attice, was suggested to unveil an octupolar order offering a rare example in d-orbital systems. The proposed order requires a ferromagnetic octupolar interaction, since the antiferromagnetic (AFM) Ising model is highly frustrated on the FCC lattice. A microscopic model was recently derived for various lattices: for an edge sharing octahedra geometry, AFM Ising octupolar and bond-dependent quadrupolar interactions were found when only dominant inter- and intra-orbital hopping integrals are taken into account. Here we investigate all possible intra- and inter-orbital exchange processes and report that interference of two intra-orbital exchanges generates a ferromagnetic octupolar interaction. Applying the strong-coupling expansion results together with tight binding parameters obtained by density functional theory, we estimate the exchange interactions for the Osmium double-perovskites, Ba$_2$BOsO$_6$ (B = Mg, Ca). Using classical Monte-Carlo simulations, we show these double-perovskites exhibit type-I AFM quadrupolar order followed by an intriguing partial quadrupole order above the transition temperature. Implications of our theory and a way to generate the octupolar order are discussed.
228 - Chao-Kai Li , Xu-Ping Yao , 2021
The type-II terminated 1T-TaS$_2$ surface of a three-dimensional 1T-TaS$_2$ bulk material realizes the effective spin-1/2 degree of freedom on each David-star cluster with ${T^2=-1}$ such that the time reversal symmetry is realized anomalously, despi te the bulk three-dimensional 1T-TaS$_2$ material has an even number of electrons per unit cell with ${T^2=+1}$. This surface is effectively viewed as a spin-1/2 triangular lattice magnet, except with a symmetry-protected topological bulk. We further propose this surface termination realizes a spinon Fermi surface spin liquid with the surface fractionalization but with a non-exotic three-dimensional bulk. We analyze possible experimental consequences of the type-II terminated surface spin liquid.
350 - Jing Xu , Fei Han , Ting-Ting Wang 2021
A notable phenomenon in topological semimetals is the violation of Kohler$^,$s rule, which dictates that the magnetoresistance $MR$ obeys a scaling behavior of $MR = f(H/rho_0$), where $MR = [rho_H-rho_0]/rho_0$ and $H$ is the magnetic field, with $r ho_H$ and $rho_0$ being the resistivity at $H$ and zero field, respectively. Here we report a violation originating from thermally-induced change in the carrier density. We find that the magnetoresistance of the Weyl semimetal, TaP, follows an extended Kohler$^,$s rule $MR = f[H/(n_Trho_0)]$, with $n_T$ describing the temperature dependence of the carrier density. We show that $n_T$ is associated with the Fermi level and the dispersion relation of the semimetal, providing a new way to reveal information on the electronic bandstructure. We offer a fundamental understanding of the violation and validity of Kohler$^,$s rule in terms of different temperature-responses of $n_T$. We apply our extended Kohler$^,$s rule to BaFe$_2$(As$_{1-x}$P$_x$)$_2$ to settle a long-standing debate on the scaling behavior of the normal-state magnetoresistance of a superconductor, namely, $MR$ ~ $tan^2theta_H$, where $theta_H$ is the Hall angle. We further validate the extended Kohler$^,$s rule and demonstrate its generality in a semiconductor, InSb, where the temperature-dependent carrier density can be reliably determined both theoretically and experimentally.
210 - D. Fu , D. Nicoletti , M. Fechner 2021
Interlayer transport in high-$T_C$ cuprates is mediated by superconducting tunneling across the CuO$_2$ planes. For this reason, the terahertz frequency optical response is dominated by one or more Josephson plasma resonances and becomes highly nonli near at fields for which the tunneling supercurrents approach their critical value, $I_C$. These large terahertz nonlinearities are in fact a hallmark of superconducting transport. Surprisingly, however, they have been documented in La$_{2-x}$Ba$_x$CuO$_4$ also above $T_C$ for doping values near $x=1/8$, and interpreted as an indication of superfluidity in the stripe phase. Here, Electric Field Induced Second Harmonic (EFISH) is used to study the dynamics of time-dependent interlayer voltages when La$_{2-x}$Ba$_x$CuO$_4$ is driven with large-amplitude terahertz pulses, in search of other characteristic signatures of Josephson tunnelling in the normal state. We show that this method is sensitive to the voltage anomalies associated with 2$pi$ Josephson phase slips, which near $x=1/8$ are observed both below and above $T_C$. These results document a new regime of nonlinear transport that shares features of sliding charge-density-waves and superconducting phase dynamics.
We apply Projected Hartree-Fock theory (PHF) for approximating ground states of Heisenberg spin clusters. Spin-rotational, point-group and complex-conjugation symmetry are variationally restored from a broken-symmetry mean-field reference, where the latter corresponds to a product of local spin states. A fermionic formulation of the Heisenberg model furnishes a conceptual connection to PHF applications in quantum chemistry and detailed equations for a self-consistent field optimization of the reference state are provided. Different PHF variants are benchmarked for ground-state energies and spin-pair correlation functions of antiferromagnetic spin rings and three different polyhedra, with various values of the local spin-quantum number s. The low computational cost and the compact wave-function representation make PHF a promising complement to existing approaches for ground states of molecular spin clusters, particularly for large s and moderately large N. The present work may also motivate future explorations of more accurate post-PHF methods for Heisenberg spin clusters.
The Shastry-Sutherland model and its generalizations have been shown to capture emergent complex magnetic properties from geometric frustration in several quasi-two-dimensional quantum magnets. Using an $sd$ exchange model, we show here that metallic Shastry-Sutherland magnets can exhibit topological Hall effect driven by magnetic skyrmions under realistic conditions. The magnetic properties are modelled with competing symmetric Heisenberg and asymmetric Dzyaloshinskii-Moriya exchange interactions, while a coupling between the spins of the itinerant electrons and the localized moments describes the magnetotransport behavior. Our results, employing complementary Monte Carlo simulations and a novel machine learning analysis to investigate the magnetic phases, provide evidence for field-driven skyrmion crystal formation for extended range of Hamiltonian parameters. By constructing an effective tight-binding model of conduction electrons coupled to the skyrmion lattice, we clearly demonstrate the appearance of topological Hall effect. We further elaborate on effects of finite temperatures on both magnetic and magnetotransport properties.
260 - Wataru Kobayashi 2021
High-temperature thermopower is interpreted as entropy that a carrier carries. Owing to spin and orbital degrees of freedom, a transition metal perovskite exhibits large thermopower at high temperatures. In this paper, we revisit the high-temperature thermopower in the perovskites to shed light on the degrees of freedom. Thus, we theoretically derive an expression of thermopower in one-dimensional octahedral-MX6-clusters chain using linear-response theory and electronic structure calculation of the chain based on the tight-binding approximation. The derived expression of the thermopower is consistent with the extended Heikes formula and well reproduced experimental data of several perovskite oxides at high temperatures. In this expression, a degeneracy of many electron states in octahedral ligand field (which is characterized by multiplet term) appears instead of the spin and orbital degeneracies. Complementarity in between our expression and the extended Heikes formula is discussed.
The binary pnictide semimetals have attracted considerable attention due to their fantastic physical properties that include topological effects, negative magnetoresistance, Weyl fermions and large non-saturation magnetoresistance. In this paper, we have successfully grown the high-quality V1-deltaSb2 single crystals by Sb flux method and investigated their electronic transport properties. A large positive magnetoresistance that reaches 477% under a magnetic field of 12 T at T = 1.8 K was observed. Notably, the magnetoresistance showed a cusp-like feature at the low magnetic fields and such feature weakened gradually as the temperature increased, which indicated the presence of weak antilocalization effect (WAL). The angle-dependent magnetoconductance and the ultra-large prefactor alpha extracted from the Hikami-Larkin-Nagaoka equation revealed that the WAL effect is a 3D bulk effect originated from the three-dimensional bulk spin-orbital coupling.
Based on tensor network simulations, we discuss the emergence of dynamical quantum phase transitions (DQPTs) in a half-filled one-dimensional lattice described by the extended Fermi-Hubbard model. Considering different initial states, namely noninter acting, metallic, insulating spin and charge density waves, we identify several types of sudden interaction quenches which lead to dynamical criticality. In different scenarios, clear connections between DQPTs and particular properties of the mean double occupation or charge imbalance can be established. Dynamical transitions resulting solely from high-frequency time-periodic modulation are also found, which are well described by a Floquet effective Hamiltonian. State-of-the-art cold-atom quantum simulators constitute ideal platforms to implement several reported DQPTs experimentally.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا